Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -3,6 +3,7 @@ import spaces
|
|
3 |
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
|
4 |
import torch
|
5 |
from threading import Thread
|
|
|
6 |
|
7 |
phi4_model_path = "Intelligent-Internet/II-Medical-8B"
|
8 |
|
@@ -11,10 +12,12 @@ device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
|
11 |
phi4_model = AutoModelForCausalLM.from_pretrained(phi4_model_path, device_map="auto", torch_dtype="auto")
|
12 |
phi4_tokenizer = AutoTokenizer.from_pretrained(phi4_model_path)
|
13 |
|
|
|
14 |
@spaces.GPU(duration=60)
|
15 |
-
def
|
16 |
if not user_message.strip():
|
17 |
-
|
|
|
18 |
|
19 |
model = phi4_model
|
20 |
tokenizer = phi4_tokenizer
|
@@ -60,6 +63,7 @@ Now, analyze the following case:"""
|
|
60 |
"streamer": streamer,
|
61 |
}
|
62 |
|
|
|
63 |
thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
64 |
thread.start()
|
65 |
|
@@ -73,10 +77,21 @@ Now, analyze the following case:"""
|
|
73 |
assistant_response += cleaned_token
|
74 |
# Update the last message in history with the current response
|
75 |
new_history[-1][1] = assistant_response.strip()
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
|
81 |
example_messages = {
|
82 |
"Headache case": "A 35-year-old female presents with a throbbing headache, nausea, and sensitivity to light. It started on one side of her head and worsens with activity. No prior trauma.",
|
@@ -150,23 +165,47 @@ with gr.Blocks(theme=gr.themes.Soft(), css=css) as demo:
|
|
150 |
example3 = gr.Button("Abdominal pain")
|
151 |
example4 = gr.Button("BMI calculation")
|
152 |
|
153 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
154 |
submit_button.click(
|
155 |
-
fn=
|
156 |
-
inputs=[user_input, max_tokens_slider, temperature_slider, top_k_slider, top_p_slider,
|
157 |
-
|
158 |
-
outputs=[chatbot, history]
|
159 |
).then(
|
160 |
-
fn=
|
161 |
-
inputs=
|
162 |
-
outputs=
|
163 |
)
|
164 |
|
165 |
-
|
|
|
|
|
166 |
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
|
|
171 |
|
172 |
demo.launch(ssr_mode=False)
|
|
|
3 |
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
|
4 |
import torch
|
5 |
from threading import Thread
|
6 |
+
import time
|
7 |
|
8 |
phi4_model_path = "Intelligent-Internet/II-Medical-8B"
|
9 |
|
|
|
12 |
phi4_model = AutoModelForCausalLM.from_pretrained(phi4_model_path, device_map="auto", torch_dtype="auto")
|
13 |
phi4_tokenizer = AutoTokenizer.from_pretrained(phi4_model_path)
|
14 |
|
15 |
+
# This is our streaming generator function that yields partial results
|
16 |
@spaces.GPU(duration=60)
|
17 |
+
def generate_streaming_response(user_message, max_tokens, temperature, top_k, top_p, repetition_penalty, history):
|
18 |
if not user_message.strip():
|
19 |
+
yield history, history
|
20 |
+
return
|
21 |
|
22 |
model = phi4_model
|
23 |
tokenizer = phi4_tokenizer
|
|
|
63 |
"streamer": streamer,
|
64 |
}
|
65 |
|
66 |
+
# Start generation in a separate thread
|
67 |
thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
68 |
thread.start()
|
69 |
|
|
|
77 |
assistant_response += cleaned_token
|
78 |
# Update the last message in history with the current response
|
79 |
new_history[-1][1] = assistant_response.strip()
|
80 |
+
yield new_history, new_history
|
81 |
+
# Add a small sleep to control the streaming rate
|
82 |
+
time.sleep(0.01)
|
83 |
+
|
84 |
+
# Return the final state after streaming is completed
|
85 |
+
yield new_history, new_history
|
86 |
+
|
87 |
+
# This is our non-streaming wrapper function for buttons that don't support streaming
|
88 |
+
def process_input(user_message, max_tokens, temperature, top_k, top_p, repetition_penalty, history):
|
89 |
+
generator = generate_streaming_response(user_message, max_tokens, temperature, top_k, top_p, repetition_penalty, history)
|
90 |
+
# Get the final result by exhausting the generator
|
91 |
+
result = None
|
92 |
+
for result in generator:
|
93 |
+
pass
|
94 |
+
return result
|
95 |
|
96 |
example_messages = {
|
97 |
"Headache case": "A 35-year-old female presents with a throbbing headache, nausea, and sensitivity to light. It started on one side of her head and worsens with activity. No prior trauma.",
|
|
|
165 |
example3 = gr.Button("Abdominal pain")
|
166 |
example4 = gr.Button("BMI calculation")
|
167 |
|
168 |
+
# Set up the streaming interface
|
169 |
+
def on_submit(message, history, max_tokens, temperature, top_k, top_p, repetition_penalty):
|
170 |
+
# Return the modified history that includes the new user message
|
171 |
+
modified_history = history + [[message, ""]]
|
172 |
+
return "", modified_history, modified_history
|
173 |
+
|
174 |
+
def on_stream(history, max_tokens, temperature, top_k, top_p, repetition_penalty):
|
175 |
+
if not history:
|
176 |
+
return history
|
177 |
+
|
178 |
+
# Get the last user message from history
|
179 |
+
user_message = history[-1][0]
|
180 |
+
|
181 |
+
# Start a fresh history without the last entry
|
182 |
+
prev_history = history[:-1]
|
183 |
+
|
184 |
+
# Generate streaming responses
|
185 |
+
for new_history, _ in generate_streaming_response(
|
186 |
+
user_message, max_tokens, temperature, top_k, top_p, repetition_penalty, prev_history
|
187 |
+
):
|
188 |
+
yield new_history
|
189 |
+
|
190 |
+
# Connect the submission event
|
191 |
submit_button.click(
|
192 |
+
fn=on_submit,
|
193 |
+
inputs=[user_input, history, max_tokens_slider, temperature_slider, top_k_slider, top_p_slider, repetition_penalty_slider],
|
194 |
+
outputs=[user_input, chatbot, history]
|
|
|
195 |
).then(
|
196 |
+
fn=on_stream,
|
197 |
+
inputs=[history, max_tokens_slider, temperature_slider, top_k_slider, top_p_slider, repetition_penalty_slider],
|
198 |
+
outputs=chatbot
|
199 |
)
|
200 |
|
201 |
+
# Handle examples
|
202 |
+
def set_example(example_text):
|
203 |
+
return gr.update(value=example_text)
|
204 |
|
205 |
+
clear_button.click(fn=lambda: ([], []), inputs=None, outputs=[chatbot, history])
|
206 |
+
example1.click(fn=lambda: set_example(example_messages["Headache case"]), inputs=None, outputs=user_input)
|
207 |
+
example2.click(fn=lambda: set_example(example_messages["Chest pain"]), inputs=None, outputs=user_input)
|
208 |
+
example3.click(fn=lambda: set_example(example_messages["Abdominal pain"]), inputs=None, outputs=user_input)
|
209 |
+
example4.click(fn=lambda: set_example(example_messages["BMI calculation"]), inputs=None, outputs=user_input)
|
210 |
|
211 |
demo.launch(ssr_mode=False)
|