VyvoTTS-LFM2 / app.py
kadirnar's picture
Update app.py
94b0409 verified
import spaces
from snac import SNAC
import torch
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer
from huggingface_hub import snapshot_download
# Check if CUDA is available
device = "cuda" if torch.cuda.is_available() else "cpu"
print("Loading SNAC model...")
snac_model = SNAC.from_pretrained("hubertsiuzdak/snac_24khz")
snac_model = snac_model.to(device)
# Available models - LFM2 models
MODELS = {
"Jenny": "Vyvo/VyvoTTS-LFM2-350M-Jenny",
"Optimus Prime": "Vyvo/VyvoTTS-LFM2-Optimus-Prime",
"Itto": "Vyvo/VyvoTTS-LFM2-Itto",
"Stephen_Fry": "Vyvo/VyvoTTS-LFM2-Stephen_Fry",
"Alhaitham": "Vyvo/VyvoTTS-LFM2-Alhaitham",
"Cyno": "Vyvo/VyvoTTS-LFM2-Cyno",
"Dehya": "Vyvo/VyvoTTS-LFM2-Dehya",
"Kaeya": "Vyvo/VyvoTTS-LFM2-Kaeya",
"Kaveh": "Vyvo/VyvoTTS-LFM2-Kaveh",
"Neuvillette": "Vyvo/VyvoTTS-LFM2-Neuvillette",
"Ningguang": "Vyvo/VyvoTTS-LFM2-Ningguang",
"Heizou": "Vyvo/VyvoTTS-LFM2-Heizou",
"Thoma": "Vyvo/VyvoTTS-LFM2-Thoma",
"Tighnari": "Vyvo/VyvoTTS-LFM2-Tighnari",
}
# Pre-load all models
print("Loading models...")
models = {}
tokenizers = {}
for lang, model_name in MODELS.items():
print(f"Loading {lang} model: {model_name}")
models[lang] = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16)
models[lang].to(device)
tokenizers[lang] = AutoTokenizer.from_pretrained(model_name)
print("All models loaded successfully!")
# LFM2 Special Tokens Configuration
TOKENIZER_LENGTH = 64400
START_OF_TEXT = 1
END_OF_TEXT = 7
START_OF_SPEECH = TOKENIZER_LENGTH + 1
END_OF_SPEECH = TOKENIZER_LENGTH + 2
START_OF_HUMAN = TOKENIZER_LENGTH + 3
END_OF_HUMAN = TOKENIZER_LENGTH + 4
START_OF_AI = TOKENIZER_LENGTH + 5
END_OF_AI = TOKENIZER_LENGTH + 6
PAD_TOKEN = TOKENIZER_LENGTH + 7
AUDIO_TOKENS_START = TOKENIZER_LENGTH + 10
# Process text prompt for LFM2
def process_prompt(prompt, tokenizer, device):
input_ids = tokenizer(prompt, return_tensors="pt").input_ids
start_token = torch.tensor([[START_OF_HUMAN]], dtype=torch.int64)
end_tokens = torch.tensor([[END_OF_TEXT, END_OF_HUMAN]], dtype=torch.int64)
modified_input_ids = torch.cat([start_token, input_ids, end_tokens], dim=1)
# No padding needed for single input
attention_mask = torch.ones_like(modified_input_ids)
return modified_input_ids.to(device), attention_mask.to(device)
# Parse output tokens to audio for LFM2
def parse_output(generated_ids):
token_to_find = START_OF_SPEECH
token_to_remove = END_OF_SPEECH
token_indices = (generated_ids == token_to_find).nonzero(as_tuple=True)
if len(token_indices[1]) > 0:
last_occurrence_idx = token_indices[1][-1].item()
cropped_tensor = generated_ids[:, last_occurrence_idx+1:]
else:
cropped_tensor = generated_ids
processed_rows = []
for row in cropped_tensor:
masked_row = row[row != token_to_remove]
processed_rows.append(masked_row)
code_lists = []
for row in processed_rows:
row_length = row.size(0)
new_length = (row_length // 7) * 7
trimmed_row = row[:new_length]
trimmed_row = [t - AUDIO_TOKENS_START for t in trimmed_row]
code_lists.append(trimmed_row)
return code_lists[0] # Return just the first one for single sample
# Redistribute codes for audio generation
def redistribute_codes(code_list, snac_model):
device = next(snac_model.parameters()).device # Get the device of SNAC model
layer_1 = []
layer_2 = []
layer_3 = []
for i in range((len(code_list)+1)//7):
layer_1.append(code_list[7*i])
layer_2.append(code_list[7*i+1]-4096)
layer_3.append(code_list[7*i+2]-(2*4096))
layer_3.append(code_list[7*i+3]-(3*4096))
layer_2.append(code_list[7*i+4]-(4*4096))
layer_3.append(code_list[7*i+5]-(5*4096))
layer_3.append(code_list[7*i+6]-(6*4096))
# Move tensors to the same device as the SNAC model
codes = [
torch.tensor(layer_1, device=device).unsqueeze(0),
torch.tensor(layer_2, device=device).unsqueeze(0),
torch.tensor(layer_3, device=device).unsqueeze(0)
]
audio_hat = snac_model.decode(codes)
return audio_hat.detach().squeeze().cpu().numpy() # Always return CPU numpy array
# Main generation function
@spaces.GPU()
def generate_speech(text, model_choice, temperature, top_p, repetition_penalty, max_new_tokens, progress=gr.Progress()):
if not text.strip():
return None
try:
progress(0.1, "πŸ”„ Processing text...")
model = models[model_choice]
tokenizer = tokenizers[model_choice]
# Voice parameter is always None for LFM2 models
input_ids, attention_mask = process_prompt(text, tokenizer, device)
progress(0.3, "🎡 Generating speech tokens...")
with torch.no_grad():
generated_ids = model.generate(
input_ids=input_ids,
attention_mask=attention_mask,
max_new_tokens=max_new_tokens,
do_sample=True,
temperature=temperature,
top_p=top_p,
repetition_penalty=repetition_penalty,
num_return_sequences=1,
eos_token_id=END_OF_SPEECH,
)
progress(0.6, "πŸ”§ Processing speech tokens...")
code_list = parse_output(generated_ids)
progress(0.8, "🎧 Converting to audio...")
audio_samples = redistribute_codes(code_list, snac_model)
progress(1.0, "βœ… Completed!")
return (24000, audio_samples)
except Exception as e:
print(f"Error generating speech: {e}")
return None
# Example texts
EXAMPLE_TEXTS = [
"Hello! I am a speech system. I can read your text with a natural voice.",
"Today is a beautiful day. The weather is perfect for a walk.",
"The sun rises from the east and sets in the west. This is a rule of nature.",
"Technology makes our lives easier every day."
]
# Create modern Gradio interface using built-in theme
with gr.Blocks(title="🎡 Modern Text-to-Speech", theme=gr.themes.Soft(), css="""
.gradio-textbox textarea { background-color: #6b7280 !important; color: white !important; }
.gradio-audio { background-color: #6b7280 !important; }
""") as demo:
# Header section
gr.Markdown("""
# 🎡 VyvoTTS
### πŸ”— [Github](https://github.com/Vyvo-Labs/VyvoTTS) | πŸ€— [HF Model](https://huggingface.co/collections/Vyvo/lfm2-tts-689eedae5353ff5b048efd55)
""")
gr.Markdown("""
VyvoTTS is a text-to-speech model by Vyvo team using LFM2 architecture, trained on multiple diverse open-source datasets.
Since some datasets may contain transcription errors or quality issues, output quality can vary.
Higher quality datasets typically produce better speech synthesis results.
**Roadmap:**
- [ ] Transformers.js support
- [ ] Pretrained model release
- [ ] vLLM support
- [x] Training and inference code release
""")
with gr.Row():
with gr.Column(scale=2):
# Text input section
text_input = gr.Textbox(
label="πŸ“ Text Input",
placeholder="Enter the text you want to convert to speech...",
lines=6,
max_lines=10
)
# Voice model selection (hidden since only Jenny is available)
model_choice = gr.Radio(
choices=list(MODELS.keys()),
value="Jenny Voice",
label="🎀 Voice Model",
visible=True # Hide since only one option
)
# Advanced settings
with gr.Accordion("βš™οΈ Advanced Settings", open=False):
temperature = gr.Slider(
minimum=0.1, maximum=1.5, value=0.6, step=0.05,
label="🌑️ Temperature",
info="Higher values create more expressive but less stable speech"
)
top_p = gr.Slider(
minimum=0.1, maximum=1.0, value=0.95, step=0.05,
label="🎯 Top P",
info="Nucleus sampling threshold value"
)
repetition_penalty = gr.Slider(
minimum=1.0, maximum=2.0, value=1.1, step=0.05,
label="πŸ”„ Repetition Penalty",
info="Higher values discourage repetitive patterns"
)
max_new_tokens = gr.Slider(
minimum=100, maximum=2000, value=1200, step=100,
label="πŸ“ Maximum Length",
info="Maximum length of generated audio (in tokens)"
)
# Action buttons
with gr.Row():
submit_btn = gr.Button("🎡 Generate Speech", variant="primary", size="lg")
clear_btn = gr.Button("πŸ—‘οΈ Clear", size="lg")
with gr.Column(scale=1):
# Output section
audio_output = gr.Audio(
label="🎧 Generated Audio",
type="numpy",
interactive=False
)
# Example texts at the bottom
with gr.Row():
example_1_btn = gr.Button(
EXAMPLE_TEXTS[0],
size="sm",
elem_classes="example-button"
)
example_2_btn = gr.Button(
EXAMPLE_TEXTS[1],
size="sm",
elem_classes="example-button"
)
with gr.Row():
example_3_btn = gr.Button(
EXAMPLE_TEXTS[2],
size="sm",
elem_classes="example-button"
)
example_4_btn = gr.Button(
EXAMPLE_TEXTS[3],
size="sm",
elem_classes="example-button"
)
# Set up example button events
example_1_btn.click(fn=lambda: EXAMPLE_TEXTS[0], outputs=text_input)
example_2_btn.click(fn=lambda: EXAMPLE_TEXTS[1], outputs=text_input)
example_3_btn.click(fn=lambda: EXAMPLE_TEXTS[2], outputs=text_input)
example_4_btn.click(fn=lambda: EXAMPLE_TEXTS[3], outputs=text_input)
# Set up event handlers
submit_btn.click(
fn=generate_speech,
inputs=[text_input, model_choice, temperature, top_p, repetition_penalty, max_new_tokens],
outputs=audio_output,
show_progress=True
)
def clear_interface():
return "", None
clear_btn.click(
fn=clear_interface,
inputs=[],
outputs=[text_input, audio_output]
)
# Launch the app
if __name__ == "__main__":
demo.queue().launch(share=False, ssr_mode=False)