Spaces:
Running
on
Zero
Running
on
Zero
import spaces | |
from snac import SNAC | |
import torch | |
import gradio as gr | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
from huggingface_hub import snapshot_download | |
# Check if CUDA is available | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
print("Loading SNAC model...") | |
snac_model = SNAC.from_pretrained("hubertsiuzdak/snac_24khz") | |
snac_model = snac_model.to(device) | |
# Available models - LFM2 models | |
MODELS = { | |
"Jenny": "Vyvo/VyvoTTS-LFM2-350M-Jenny", | |
"Optimus Prime": "Vyvo/VyvoTTS-LFM2-Optimus-Prime", | |
"Itto": "Vyvo/VyvoTTS-LFM2-Itto", | |
"Stephen_Fry": "Vyvo/VyvoTTS-LFM2-Stephen_Fry", | |
"Alhaitham": "Vyvo/VyvoTTS-LFM2-Alhaitham", | |
"Cyno": "Vyvo/VyvoTTS-LFM2-Cyno", | |
"Dehya": "Vyvo/VyvoTTS-LFM2-Dehya", | |
"Kaeya": "Vyvo/VyvoTTS-LFM2-Kaeya", | |
"Kaveh": "Vyvo/VyvoTTS-LFM2-Kaveh", | |
"Neuvillette": "Vyvo/VyvoTTS-LFM2-Neuvillette", | |
"Ningguang": "Vyvo/VyvoTTS-LFM2-Ningguang", | |
"Heizou": "Vyvo/VyvoTTS-LFM2-Heizou", | |
"Thoma": "Vyvo/VyvoTTS-LFM2-Thoma", | |
"Tighnari": "Vyvo/VyvoTTS-LFM2-Tighnari", | |
} | |
# Pre-load all models | |
print("Loading models...") | |
models = {} | |
tokenizers = {} | |
for lang, model_name in MODELS.items(): | |
print(f"Loading {lang} model: {model_name}") | |
models[lang] = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16) | |
models[lang].to(device) | |
tokenizers[lang] = AutoTokenizer.from_pretrained(model_name) | |
print("All models loaded successfully!") | |
# LFM2 Special Tokens Configuration | |
TOKENIZER_LENGTH = 64400 | |
START_OF_TEXT = 1 | |
END_OF_TEXT = 7 | |
START_OF_SPEECH = TOKENIZER_LENGTH + 1 | |
END_OF_SPEECH = TOKENIZER_LENGTH + 2 | |
START_OF_HUMAN = TOKENIZER_LENGTH + 3 | |
END_OF_HUMAN = TOKENIZER_LENGTH + 4 | |
START_OF_AI = TOKENIZER_LENGTH + 5 | |
END_OF_AI = TOKENIZER_LENGTH + 6 | |
PAD_TOKEN = TOKENIZER_LENGTH + 7 | |
AUDIO_TOKENS_START = TOKENIZER_LENGTH + 10 | |
# Process text prompt for LFM2 | |
def process_prompt(prompt, tokenizer, device): | |
input_ids = tokenizer(prompt, return_tensors="pt").input_ids | |
start_token = torch.tensor([[START_OF_HUMAN]], dtype=torch.int64) | |
end_tokens = torch.tensor([[END_OF_TEXT, END_OF_HUMAN]], dtype=torch.int64) | |
modified_input_ids = torch.cat([start_token, input_ids, end_tokens], dim=1) | |
# No padding needed for single input | |
attention_mask = torch.ones_like(modified_input_ids) | |
return modified_input_ids.to(device), attention_mask.to(device) | |
# Parse output tokens to audio for LFM2 | |
def parse_output(generated_ids): | |
token_to_find = START_OF_SPEECH | |
token_to_remove = END_OF_SPEECH | |
token_indices = (generated_ids == token_to_find).nonzero(as_tuple=True) | |
if len(token_indices[1]) > 0: | |
last_occurrence_idx = token_indices[1][-1].item() | |
cropped_tensor = generated_ids[:, last_occurrence_idx+1:] | |
else: | |
cropped_tensor = generated_ids | |
processed_rows = [] | |
for row in cropped_tensor: | |
masked_row = row[row != token_to_remove] | |
processed_rows.append(masked_row) | |
code_lists = [] | |
for row in processed_rows: | |
row_length = row.size(0) | |
new_length = (row_length // 7) * 7 | |
trimmed_row = row[:new_length] | |
trimmed_row = [t - AUDIO_TOKENS_START for t in trimmed_row] | |
code_lists.append(trimmed_row) | |
return code_lists[0] # Return just the first one for single sample | |
# Redistribute codes for audio generation | |
def redistribute_codes(code_list, snac_model): | |
device = next(snac_model.parameters()).device # Get the device of SNAC model | |
layer_1 = [] | |
layer_2 = [] | |
layer_3 = [] | |
for i in range((len(code_list)+1)//7): | |
layer_1.append(code_list[7*i]) | |
layer_2.append(code_list[7*i+1]-4096) | |
layer_3.append(code_list[7*i+2]-(2*4096)) | |
layer_3.append(code_list[7*i+3]-(3*4096)) | |
layer_2.append(code_list[7*i+4]-(4*4096)) | |
layer_3.append(code_list[7*i+5]-(5*4096)) | |
layer_3.append(code_list[7*i+6]-(6*4096)) | |
# Move tensors to the same device as the SNAC model | |
codes = [ | |
torch.tensor(layer_1, device=device).unsqueeze(0), | |
torch.tensor(layer_2, device=device).unsqueeze(0), | |
torch.tensor(layer_3, device=device).unsqueeze(0) | |
] | |
audio_hat = snac_model.decode(codes) | |
return audio_hat.detach().squeeze().cpu().numpy() # Always return CPU numpy array | |
# Main generation function | |
def generate_speech(text, model_choice, temperature, top_p, repetition_penalty, max_new_tokens, progress=gr.Progress()): | |
if not text.strip(): | |
return None | |
try: | |
progress(0.1, "π Processing text...") | |
model = models[model_choice] | |
tokenizer = tokenizers[model_choice] | |
# Voice parameter is always None for LFM2 models | |
input_ids, attention_mask = process_prompt(text, tokenizer, device) | |
progress(0.3, "π΅ Generating speech tokens...") | |
with torch.no_grad(): | |
generated_ids = model.generate( | |
input_ids=input_ids, | |
attention_mask=attention_mask, | |
max_new_tokens=max_new_tokens, | |
do_sample=True, | |
temperature=temperature, | |
top_p=top_p, | |
repetition_penalty=repetition_penalty, | |
num_return_sequences=1, | |
eos_token_id=END_OF_SPEECH, | |
) | |
progress(0.6, "π§ Processing speech tokens...") | |
code_list = parse_output(generated_ids) | |
progress(0.8, "π§ Converting to audio...") | |
audio_samples = redistribute_codes(code_list, snac_model) | |
progress(1.0, "β Completed!") | |
return (24000, audio_samples) | |
except Exception as e: | |
print(f"Error generating speech: {e}") | |
return None | |
# Example texts | |
EXAMPLE_TEXTS = [ | |
"Hello! I am a speech system. I can read your text with a natural voice.", | |
"Today is a beautiful day. The weather is perfect for a walk.", | |
"The sun rises from the east and sets in the west. This is a rule of nature.", | |
"Technology makes our lives easier every day." | |
] | |
# Create modern Gradio interface using built-in theme | |
with gr.Blocks(title="π΅ Modern Text-to-Speech", theme=gr.themes.Soft(), css=""" | |
.gradio-textbox textarea { background-color: #6b7280 !important; color: white !important; } | |
.gradio-audio { background-color: #6b7280 !important; } | |
""") as demo: | |
# Header section | |
gr.Markdown(""" | |
# π΅ VyvoTTS | |
### π [Github](https://github.com/Vyvo-Labs/VyvoTTS) | π€ [HF Model](https://huggingface.co/collections/Vyvo/lfm2-tts-689eedae5353ff5b048efd55) | |
""") | |
gr.Markdown(""" | |
VyvoTTS is a text-to-speech model by Vyvo team using LFM2 architecture, trained on multiple diverse open-source datasets. | |
Since some datasets may contain transcription errors or quality issues, output quality can vary. | |
Higher quality datasets typically produce better speech synthesis results. | |
**Roadmap:** | |
- [ ] Transformers.js support | |
- [ ] Pretrained model release | |
- [ ] vLLM support | |
- [x] Training and inference code release | |
""") | |
with gr.Row(): | |
with gr.Column(scale=2): | |
# Text input section | |
text_input = gr.Textbox( | |
label="π Text Input", | |
placeholder="Enter the text you want to convert to speech...", | |
lines=6, | |
max_lines=10 | |
) | |
# Voice model selection (hidden since only Jenny is available) | |
model_choice = gr.Radio( | |
choices=list(MODELS.keys()), | |
value="Jenny Voice", | |
label="π€ Voice Model", | |
visible=True # Hide since only one option | |
) | |
# Advanced settings | |
with gr.Accordion("βοΈ Advanced Settings", open=False): | |
temperature = gr.Slider( | |
minimum=0.1, maximum=1.5, value=0.6, step=0.05, | |
label="π‘οΈ Temperature", | |
info="Higher values create more expressive but less stable speech" | |
) | |
top_p = gr.Slider( | |
minimum=0.1, maximum=1.0, value=0.95, step=0.05, | |
label="π― Top P", | |
info="Nucleus sampling threshold value" | |
) | |
repetition_penalty = gr.Slider( | |
minimum=1.0, maximum=2.0, value=1.1, step=0.05, | |
label="π Repetition Penalty", | |
info="Higher values discourage repetitive patterns" | |
) | |
max_new_tokens = gr.Slider( | |
minimum=100, maximum=2000, value=1200, step=100, | |
label="π Maximum Length", | |
info="Maximum length of generated audio (in tokens)" | |
) | |
# Action buttons | |
with gr.Row(): | |
submit_btn = gr.Button("π΅ Generate Speech", variant="primary", size="lg") | |
clear_btn = gr.Button("ποΈ Clear", size="lg") | |
with gr.Column(scale=1): | |
# Output section | |
audio_output = gr.Audio( | |
label="π§ Generated Audio", | |
type="numpy", | |
interactive=False | |
) | |
# Example texts at the bottom | |
with gr.Row(): | |
example_1_btn = gr.Button( | |
EXAMPLE_TEXTS[0], | |
size="sm", | |
elem_classes="example-button" | |
) | |
example_2_btn = gr.Button( | |
EXAMPLE_TEXTS[1], | |
size="sm", | |
elem_classes="example-button" | |
) | |
with gr.Row(): | |
example_3_btn = gr.Button( | |
EXAMPLE_TEXTS[2], | |
size="sm", | |
elem_classes="example-button" | |
) | |
example_4_btn = gr.Button( | |
EXAMPLE_TEXTS[3], | |
size="sm", | |
elem_classes="example-button" | |
) | |
# Set up example button events | |
example_1_btn.click(fn=lambda: EXAMPLE_TEXTS[0], outputs=text_input) | |
example_2_btn.click(fn=lambda: EXAMPLE_TEXTS[1], outputs=text_input) | |
example_3_btn.click(fn=lambda: EXAMPLE_TEXTS[2], outputs=text_input) | |
example_4_btn.click(fn=lambda: EXAMPLE_TEXTS[3], outputs=text_input) | |
# Set up event handlers | |
submit_btn.click( | |
fn=generate_speech, | |
inputs=[text_input, model_choice, temperature, top_p, repetition_penalty, max_new_tokens], | |
outputs=audio_output, | |
show_progress=True | |
) | |
def clear_interface(): | |
return "", None | |
clear_btn.click( | |
fn=clear_interface, | |
inputs=[], | |
outputs=[text_input, audio_output] | |
) | |
# Launch the app | |
if __name__ == "__main__": | |
demo.queue().launch(share=False, ssr_mode=False) |