Spaces:
Running
Running
import gradio as gr | |
import requests | |
from bs4 import BeautifulSoup | |
import os | |
import json | |
import logging | |
import pandas as pd # Useful for creating the dataframe output | |
# ------------------------ | |
# Configuration | |
# ------------------------ | |
WORDLIFT_API_URL = "https://api.wordlift.io/content-evaluations" | |
WORDLIFT_API_KEY = os.getenv("WORDLIFT_API_KEY") # Get API key from environment variable | |
# Set up logging | |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s') | |
logger = logging.getLogger(__name__) | |
# ------------------------ | |
# Custom CSS & Theme | |
# ------------------------ | |
css = """ | |
@import url('https://fonts.googleapis.com/css2?family=Open+Sans:wght@300;400;600;700&display=swap'); | |
body { | |
font-family: 'Open Sans', sans-serif !important; | |
} | |
.primary-btn { | |
background-color: #3452db !important; | |
color: white !important; | |
} | |
.primary-btn:hover { | |
background-color: #2a41af !important; | |
} | |
.gradio-container { | |
max-width: 1200px; /* Limit width for better readability */ | |
margin: auto; | |
} | |
""" | |
theme = gr.themes.Soft( | |
primary_hue=gr.themes.colors.Color( | |
name="blue", | |
c50="#eef1ff", | |
c100="#e0e5ff", | |
c200="#c3cbff", | |
c300="#a5b2ff", | |
c400="#8798ff", | |
c500="#6a7eff", | |
c600="#3452db", | |
c700="#2a41af", | |
c800="#1f3183", | |
c900="#152156", | |
c950="#0a102b", | |
) | |
) | |
# ------------------------ | |
# Content Fetching Logic | |
# ------------------------ | |
def fetch_content_from_url(url: str, timeout: int = 15) -> str: | |
"""Fetches main text content from a URL.""" | |
logger.info(f"Fetching content from: {url}") | |
try: | |
headers = { | |
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36' | |
} | |
response = requests.get(url, headers=headers, timeout=timeout) | |
response.raise_for_status() # Raise an exception for bad status codes | |
soup = BeautifulSoup(response.content, 'html.parser') | |
# Attempt to find main content block | |
main_content = soup.find('main') or soup.find('article') | |
if main_content: | |
# Extract text from common text-containing tags within the main block | |
text_elements = main_content.find_all(['p', 'h1', 'h2', 'h3', 'h4', 'h5', 'h6', 'li', 'blockquote']) | |
text = ' '.join([elem.get_text() for elem in text_elements]) | |
else: | |
# Fallback to extracting text from body if no main block found | |
text_elements = soup.body.find_all(['p', 'h1', 'h2', 'h3', 'h4', 'h5', 'h6', 'li', 'blockquote']) | |
text = ' '.join([elem.get_text() for elem in text_elements]) | |
logger.warning(f"No <main> or <article> found for {url}, extracting from body.") | |
# Clean up extra whitespace | |
text = ' '.join(text.split()) | |
# Limit text length to avoid excessively large API calls (adjust as needed) | |
max_text_length = 150000 # approx 25k words, adjust based on API limits/cost | |
if len(text) > max_text_length: | |
logger.warning(f"Content for {url} is too long ({len(text)} chars), truncating to {max_text_length} chars.") | |
text = text[:max_text_length] + "..." # Indicate truncation | |
return text | |
except requests.exceptions.RequestException as e: | |
logger.error(f"Failed to fetch content from {url}: {e}") | |
return None | |
except Exception as e: | |
logger.error(f"Error processing content from {url}: {e}") | |
return None | |
# ------------------------ | |
# WordLift API Call Logic | |
# ------------------------ | |
def call_wordlift_api(text: str, keywords: Optional[List[str]] = None) -> Optional[Dict[str, Any]]: | |
"""Calls the WordLift Content Evaluation API.""" | |
if not WORDLIFT_API_KEY: | |
logger.error("WORDLIFT_API_KEY environment variable not set.") | |
return {"error": "API key not configured."} | |
if not text: | |
return {"error": "No content provided or fetched."} | |
payload = { | |
"text": text, | |
"keywords": keywords if keywords else [] | |
} | |
headers = { | |
'Authorization': f'Key {WORDLIFT_API_KEY}', | |
'Content-Type': 'application/json', | |
'Accept': 'application/json' | |
} | |
logger.info(f"Calling WordLift API with text length {len(text)} and {len(keywords or [])} keywords.") | |
try: | |
response = requests.post(WORDLIFT_API_URL, headers=headers, json=payload, timeout=60) # Increased timeout | |
response.raise_for_status() # Raise HTTPError for bad responses (4xx or 5xx) | |
return response.json() | |
except requests.exceptions.HTTPError as e: | |
logger.error(f"WordLift API HTTP error: {e.response.status_code} - {e.response.text}") | |
try: | |
error_detail = e.response.json() | |
except json.JSONDecodeError: | |
error_detail = e.response.text | |
return {"error": f"API returned status code {e.response.status_code}", "details": error_detail} | |
except requests.exceptions.RequestException as e: | |
logger.error(f"WordLift API request error: {e}") | |
return {"error": f"API request failed: {e}"} | |
except Exception as e: | |
logger.error(f"Unexpected error during API call: {e}") | |
return {"error": f"An unexpected error occurred: {e}"} | |
# ------------------------ | |
# Main Evaluation Batch Function | |
# ------------------------ | |
def evaluate_urls_batch(url_data: pd.DataFrame): | |
""" | |
Evaluates a batch of URLs using the WordLift API. | |
Args: | |
url_data: A pandas DataFrame with columns ['URL', 'Target Keywords (comma-separated)']. | |
Returns: | |
A tuple containing: | |
- A pandas DataFrame with the summary results. | |
- A dictionary containing the full results (including errors) keyed by URL. | |
""" | |
if not url_data or url_data.empty: | |
return pd.DataFrame(columns=['URL', 'Status', 'Overall Score', 'Content Purpose', 'Content Accuracy', 'Content Depth', 'Readability Score (API)', 'Readability Grade Level', 'SEO Score', 'Word Count', 'Error/Details']), {} | |
summary_results = [] | |
full_results = {} | |
for index, row in url_data.iterrows(): | |
url = row['URL'].strip() | |
keywords_str = row['Target Keywords (comma-separated)'].strip() if row['Target Keywords (comma-separated)'] else "" | |
keywords = [kw.strip() for kw in keywords_str.split(',') if kw.strip()] | |
if not url: | |
summary_results.append([url, "Skipped", None, None, None, None, None, None, None, None, "Empty URL"]) | |
full_results[url if url else f"Row_{index}"] = {"status": "Skipped", "error": "Empty URL input."} | |
continue | |
logger.info(f"Processing URL: {url} with keywords: {keywords}") | |
# 1. Fetch Content | |
content = fetch_content_from_url(url) | |
if content is None or not content.strip(): | |
status = "Failed" | |
error_msg = "Failed to fetch or extract content." | |
summary_results.append([url, status, None, None, None, None, None, None, None, None, error_msg]) | |
full_results[url] = {"status": status, "error": error_msg} | |
logger.error(f"Processing failed for {url}: {error_msg}") | |
continue # Move to next URL | |
# 2. Call WordLift API | |
api_result = call_wordlift_api(content, keywords) | |
# 3. Process API Result | |
summary_row = [url] | |
if api_result and "error" not in api_result: | |
status = "Success" | |
qs = api_result.get('quality_score', {}) | |
breakdown = qs.get('breakdown', {}) | |
content_breakdown = breakdown.get('content', {}) | |
readability_breakdown = breakdown.get('readability', {}) | |
seo_breakdown = breakdown.get('seo', {}) | |
metadata = api_result.get('metadata', {}) | |
summary_row.extend([ | |
status, | |
qs.get('overall', None), | |
content_breakdown.get('purpose', None), | |
content_breakdown.get('accuracy', None), | |
content_breakdown.get('depth', None), | |
readability_breakdown.get('score', None), # API's readability score (e.g. 2.5) | |
readability_breakdown.get('grade_level', None), | |
seo_breakdown.get('score', None), | |
metadata.get('word_count', None), | |
None # No error | |
]) | |
full_results[url] = api_result # Store full API result | |
else: | |
status = "Failed" | |
error_msg = api_result.get("error", "Unknown API error.") if api_result else "API call failed." | |
details = api_result.get("details", "") if api_result else "" | |
summary_row.extend([ | |
status, | |
None, None, None, None, None, None, None, None, | |
f"{error_msg} {details}" | |
]) | |
full_results[url] = {"status": status, "error": error_msg, "details": details} | |
logger.error(f"API call failed for {url}: {error_msg} {details}") | |
summary_results.append(summary_row) | |
# Create pandas DataFrame for summary output | |
summary_df = pd.DataFrame(summary_results, columns=[ | |
'URL', 'Status', 'Overall Score', 'Content Purpose', | |
'Content Accuracy', 'Content Depth', 'Readability Score (API)', | |
'Readability Grade Level', 'SEO Score', 'Word Count', 'Error/Details' | |
]) | |
# Format numeric columns for display if they are not None | |
for col in ['Overall Score', 'Content Purpose', 'Content Accuracy', 'Content Depth', 'Readability Score (API)', 'Readability Grade Level', 'SEO Score', 'Word Count']: | |
if col in summary_df.columns: | |
# Convert to numeric, coercing errors, then format | |
summary_df[col] = pd.to_numeric(summary_df[col], errors='coerce') | |
if col in ['Overall Score', 'Readability Score (API)', 'SEO Score']: | |
summary_df[col] = summary_df[col].apply(lambda x: f'{x:.1f}' if pd.notna(x) else '-') | |
else: | |
summary_df[col] = summary_df[col].apply(lambda x: f'{int(x)}' if pd.notna(x) else '-') | |
return summary_df, full_results | |
# ------------------------ | |
# Gradio Blocks Interface Setup | |
# ------------------------ | |
with gr.Blocks(css=css, theme=theme) as demo: | |
gr.Markdown("# WordLift Multi-URL Content Evaluator") | |
gr.Markdown( | |
"Enter up to 30 URLs in the table below. " | |
"Optionally, provide comma-separated target keywords for each URL. " | |
"The app will fetch content from each URL and evaluate it using the WordLift API." | |
) | |
with gr.Row(): | |
with gr.Column(): | |
url_input_df = gr.Dataframe( | |
headers=["URL", "Target Keywords (comma-separated)"], | |
datatype=["str", "str"], | |
row_count=(1, 30), # Allow adding rows up to 30 | |
col_count=(2, "fixed"), | |
value=[["https://example.com/article1", "keyword A, keyword B"], ["https://example.com/article2", ""]], # Default examples | |
label="URLs and Keywords" | |
) | |
submit_button = gr.Button("Evaluate All URLs", elem_classes=["primary-btn"]) | |
gr.Markdown("## Evaluation Results") | |
with gr.Column(): | |
summary_output_df = gr.DataFrame( | |
label="Summary Results", | |
headers=['URL', 'Status', 'Overall Score', 'Content Purpose', 'Content Accuracy', 'Content Depth', 'Readability Score (API)', 'Readability Grade Level', 'SEO Score', 'Word Count', 'Error/Details'], | |
datatype=["str", "str", "str", "str", "str", "str", "str", "str", "str", "str", "str"], # Use str to handle '-' for missing values | |
wrap=True # Wrap text in columns | |
) | |
with gr.Accordion("Full JSON Results", open=False): | |
full_results_json = gr.JSON(label="Raw API Results per URL") | |
submit_button.click( | |
fn=evaluate_urls_batch, | |
inputs=[url_input_df], | |
outputs=[summary_output_df, full_results_json] | |
) | |
# Launch the app | |
if __name__ == "__main__": | |
if not WORDLIFT_API_KEY: | |
logger.error("\n----------------------------------------------------------") | |
logger.error("WORDLIFT_API_KEY environment variable is not set.") | |
logger.error("Please set it before running the script:") | |
logger.error(" export WORDLIFT_API_KEY='YOUR_API_KEY'") | |
logger.error("Or if using a .env file and python-dotenv:") | |
logger.error(" pip install python-dotenv") | |
logger.error(" # Add WORDLIFT_API_KEY=YOUR_API_KEY to a .env file") | |
logger.error(" # import dotenv; dotenv.load_dotenv()") | |
logger.error(" # in your script before getting the key.") | |
logger.error("----------------------------------------------------------\n") | |
# Optionally exit or raise error here if the key is strictly required to launch | |
# exit() | |
pass # Allow launching, but API calls will fail | |
logger.info("Launching Gradio app...") | |
demo.launch() |