File size: 13,214 Bytes
60b53a6
 
33f0de1
6696db2
33f0de1
60b53a6
3c28324
f18c3eb
 
9787d82
33f0de1
ea35578
2759f98
b14462b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2deee43
 
cd6f17c
 
9386df0
 
 
 
 
 
cd6f17c
65194e4
575de15
9386df0
 
 
cd6f17c
 
 
33f0de1
 
 
6cca076
60b53a6
b14462b
 
 
 
 
 
 
 
 
 
 
 
9386df0
33f0de1
bdd35f2
8869d77
9386df0
f18c3eb
2deee43
9386df0
 
6cca076
9386df0
6cca076
9255c5c
6cca076
 
 
 
9386df0
6cca076
12f46b7
6cca076
2deee43
8869d77
 
2deee43
f18c3eb
b14462b
 
 
 
 
 
 
 
 
65194e4
9386df0
 
cd6f17c
9386df0
cd6f17c
 
 
 
 
bdd35f2
cd6f17c
6cca076
65194e4
 
 
 
 
 
9386df0
65194e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b14462b
 
 
 
 
 
 
19de71a
33f0de1
cd6f17c
33f0de1
b14462b
 
 
 
 
 
 
33f0de1
 
6cca076
 
33f0de1
 
 
 
 
 
0c7cad3
3226776
33f0de1
3226776
33f0de1
f18c3eb
 
 
33f0de1
6cca076
3c28324
3226776
33f0de1
 
b14462b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
60b53a6
0c7cad3
b14462b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
import gradio as gr
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
from huggingface_hub import login
import os
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np
import time

# Authentification
login(token=os.environ["HF_TOKEN"])

# Restructuration des modèles et de leurs informations
models_info = {
    "Meta-llama": {
        "Llama 2": {
            "7B": {"name": "meta-llama/Llama-2-7b-hf", "languages": ["en"]},
            "13B": {"name": "meta-llama/Llama-2-13b-hf", "languages": ["en"]},
            "70B": {"name": "meta-llama/Llama-2-70b-hf", "languages": ["en"]},
        },
        "Llama 3": {
            "8B": {"name": "meta-llama/Meta-Llama-3-8B", "languages": ["en"]},
            "3.2-3B": {"name": "meta-llama/Llama-3.2-3B", "languages": ["en", "de", "fr", "it", "pt", "hi", "es", "th"]},
            "3.1-8B": {"name": "meta-llama/Llama-3.1-8B", "languages": ["en", "de", "fr", "it", "pt", "hi", "es", "th"]},
        },
    },
    "Mistral AI": {
        "Mistral": {
            "7B-v0.1": {"name": "mistralai/Mistral-7B-v0.1", "languages": ["en"]},
            "7B-v0.3": {"name": "mistralai/Mistral-7B-v0.3", "languages": ["en"]},
        },
        "Mixtral": {
            "8x7B-v0.1": {"name": "mistralai/Mixtral-8x7B-v0.1", "languages": ["en", "fr", "it", "de", "es"]},
        },
    },
    "Google": {
        "Gemma": {
            "2B": {"name": "google/gemma-2-2b", "languages": ["en"]},
            "9B": {"name": "google/gemma-2-9b", "languages": ["en"]},
            "27B": {"name": "google/gemma-2-27b", "languages": ["en"]},
        },
    },
    "CroissantLLM": {
        "CroissantLLMBase": {
            "Base": {"name": "croissantllm/CroissantLLMBase", "languages": ["en", "fr"]},
        },
    },
}

# Paramètres recommandés pour chaque modèle
model_parameters = {
    "meta-llama/Llama-2-13b-hf": {"temperature": 0.8, "top_p": 0.9, "top_k": 40},
    "meta-llama/Llama-2-7b-hf": {"temperature": 0.8, "top_p": 0.9, "top_k": 40},
    "meta-llama/Llama-2-70b-hf": {"temperature": 0.8, "top_p": 0.9, "top_k": 40},
    "meta-llama/Meta-Llama-3-8B": {"temperature": 0.75, "top_p": 0.9, "top_k": 50},
    "meta-llama/Llama-3.2-3B": {"temperature": 0.75, "top_p": 0.9, "top_k": 50},
    "meta-llama/Llama-3.1-8B": {"temperature": 0.75, "top_p": 0.9, "top_k": 50},
    "mistralai/Mistral-7B-v0.1": {"temperature": 0.7, "top_p": 0.9, "top_k": 50},
    "mistralai/Mixtral-8x7B-v0.1": {"temperature": 0.8, "top_p": 0.95, "top_k": 50},
    "mistralai/Mistral-7B-v0.3": {"temperature": 0.7, "top_p": 0.9, "top_k": 50},
    "google/gemma-2-2b": {"temperature": 0.7, "top_p": 0.95, "top_k": 40},
    "google/gemma-2-9b": {"temperature": 0.7, "top_p": 0.95, "top_k": 40},
    "google/gemma-2-27b": {"temperature": 0.7, "top_p": 0.95, "top_k": 40},
    "croissantllm/CroissantLLMBase": {"temperature": 0.8, "top_p": 0.92, "top_k": 50}
}

# Variables globales
model = None
tokenizer = None
selected_language = None

def update_model_type(family):
    return gr.Dropdown(choices=list(models_info[family].keys()), value=None, interactive=True)

def update_model_variation(family, model_type):
    return gr.Dropdown(choices=list(models_info[family][model_type].keys()), value=None, interactive=True)

def update_selected_model(family, model_type, variation):
    if family and model_type and variation:
        model_name = models_info[family][model_type][variation]["name"]
        return model_name, gr.Dropdown(choices=models_info[family][model_type][variation]["languages"], value=models_info[family][model_type][variation]["languages"][0], visible=True, interactive=True)
    return "", gr.Dropdown(visible=False)

def load_model(model_name, progress=gr.Progress()):
    global model, tokenizer
    try:
        progress(0, desc="Chargement du tokenizer")
        tokenizer = AutoTokenizer.from_pretrained(model_name)
        progress(0.5, desc="Chargement du modèle")
        
        # Configurations spécifiques par modèle
        if "mixtral" in model_name.lower():
            model = AutoModelForCausalLM.from_pretrained(
                model_name,
                torch_dtype=torch.float16,
                device_map="auto",
                load_in_8bit=True
            )
        else:
            model = AutoModelForCausalLM.from_pretrained(
                model_name,
                torch_dtype=torch.float16,
                device_map="auto"
            )
        
        if tokenizer.pad_token is None:
            tokenizer.pad_token = tokenizer.eos_token
        
        progress(1.0, desc="Modèle chargé")
        
        # Recherche des langues disponibles pour le modèle sélectionné
        available_languages = next(
            (info["languages"] for family in models_info.values()
             for model_type in family.values()
             for variation in model_type.values()
             if variation["name"] == model_name),
            ["en"]  # Défaut à l'anglais si non trouvé
        )
        
        # Mise à jour des sliders avec les valeurs recommandées
        params = model_parameters[model_name]
        return (
            f"Modèle {model_name} chargé avec succès. Langues disponibles : {', '.join(available_languages)}",
            gr.Dropdown(choices=available_languages, value=available_languages[0], visible=True, interactive=True),
            params["temperature"],
            params["top_p"],
            params["top_k"]
        )
    except Exception as e:
        return f"Erreur lors du chargement du modèle : {str(e)}", gr.Dropdown(visible=False), None, None, None

def set_language(lang):
    global selected_language
    selected_language = lang
    return f"Langue sélectionnée : {lang}"

def ensure_token_display(token):
    """Assure que le token est affiché correctement."""
    if token.isdigit() or (token.startswith('-') and token[1:].isdigit()):
        return tokenizer.decode([int(token)])
    return token

def analyze_next_token(input_text, temperature, top_p, top_k):
    global model, tokenizer, selected_language
    
    if model is None or tokenizer is None:
        return "Veuillez d'abord charger un modèle.", None, None

    inputs = tokenizer(input_text, return_tensors="pt", padding=True, truncation=True, max_length=512).to(model.device)
    
    try:
        with torch.no_grad():
            outputs = model(**inputs)
        
        last_token_logits = outputs.logits[0, -1, :]
        probabilities = torch.nn.functional.softmax(last_token_logits, dim=-1)
        
        top_k = 10
        top_probs, top_indices = torch.topk(probabilities, top_k)
        top_words = [ensure_token_display(tokenizer.decode([idx.item()])) for idx in top_indices]
        prob_data = {word: prob.item() for word, prob in zip(top_words, top_probs)}
        
        prob_text = "Prochains tokens les plus probables :\n\n"
        for word, prob in prob_data.items():
            prob_text += f"{word}: {prob:.2%}\n"
        
        prob_plot = plot_probabilities(prob_data)
        attention_plot = plot_attention(inputs["input_ids"][0].cpu(), last_token_logits.cpu())
        
        return prob_text, attention_plot, prob_plot
    except Exception as e:
        return f"Erreur lors de l'analyse : {str(e)}", None, None

def generate_text(input_text, temperature, top_p, top_k):
    global model, tokenizer, selected_language
    
    if model is None or tokenizer is None:
        return "Veuillez d'abord charger un modèle."

    inputs = tokenizer(input_text, return_tensors="pt", padding=True, truncation=True, max_length=512).to(model.device)
    
    try:
        with torch.no_grad():
            outputs = model.generate(
                **inputs,
                max_new_tokens=10,
                temperature=temperature,
                top_p=top_p,
                top_k=top_k
            )
        
        generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
        return generated_text
    except Exception as e:
        return f"Erreur lors de la génération : {str(e)}"

def plot_probabilities(prob_data):
    words = list(prob_data.keys())
    probs = list(prob_data.values())
    
    fig, ax = plt.subplots(figsize=(12, 6))
    bars = ax.bar(range(len(words)), probs, color='lightgreen')
    ax.set_title("Probabilités des tokens suivants les plus probables")
    ax.set_xlabel("Tokens")
    ax.set_ylabel("Probabilité")
    
    ax.set_xticks(range(len(words)))
    ax.set_xticklabels(words, rotation=45, ha='right')
    
    for i, (bar, word) in enumerate(zip(bars, words)):
        height = bar.get_height()
        ax.text(i, height, f'{height:.2%}',
                ha='center', va='bottom', rotation=0)
    
    plt.tight_layout()
    return fig

def plot_attention(input_ids, last_token_logits):
    input_tokens = [ensure_token_display(tokenizer.decode([id])) for id in input_ids]
    attention_scores = torch.nn.functional.softmax(last_token_logits, dim=-1)
    top_k = min(len(input_tokens), 10)
    top_attention_scores, _ = torch.topk(attention_scores, top_k)
    
    fig, ax = plt.subplots(figsize=(14, 7))
    sns.heatmap(top_attention_scores.unsqueeze(0).numpy(), annot=True, cmap="YlOrRd", cbar=True, ax=ax, fmt='.2%')
    ax.set_xticklabels(input_tokens[-top_k:], rotation=45, ha="right", fontsize=10)
    ax.set_yticklabels(["Attention"], rotation=0, fontsize=10)
    ax.set_title("Scores d'attention pour les derniers tokens", fontsize=16)
    
    cbar = ax.collections[0].colorbar
    cbar.set_label("Score d'attention", fontsize=12)
    cbar.ax.tick_params(labelsize=10)
    
    plt.tight_layout()
    return fig

def reset():
    global model, tokenizer, selected_language
    model = None
    tokenizer = None
    selected_language = None
    return (
        "", 1.0, 1.0, 50, None, None, None, None,
        gr.Dropdown(choices=list(models_info.keys()), value=None, interactive=True),
        gr.Dropdown(choices=[], value=None, interactive=False),
        gr.Dropdown(choices=[], value=None, interactive=False),
        "", gr.Dropdown(visible=False), ""
    )

with gr.Blocks() as demo:
    gr.Markdown("# LLM&BIAS")
    
    with gr.Accordion("Sélection du modèle", open=True):
        with gr.Row():
            model_family = gr.Dropdown(choices=list(models_info.keys()), label="Famille de modèle", interactive=True)
            model_type = gr.Dropdown(choices=[], label="Type de modèle", interactive=False)
            model_variation = gr.Dropdown(choices=[], label="Variation du modèle", interactive=False)
        
        selected_model = gr.Textbox(label="Modèle sélectionné", interactive=False)
        load_button = gr.Button("Charger le modèle")
        load_output = gr.Textbox(label="Statut du chargement")
        language_dropdown = gr.Dropdown(label="Choisissez une langue", visible=False)
        language_output = gr.Textbox(label="Langue sélectionnée")
    
    with gr.Row():
        temperature = gr.Slider(0.1, 2.0, value=1.0, label="Température")
        top_p = gr.Slider(0.1, 1.0, value=1.0, label="Top-p")
        top_k = gr.Slider(1, 100, value=50, step=1, label="Top-k")
    
    input_text = gr.Textbox(label="Texte d'entrée", lines=3)
    analyze_button = gr.Button("Analyser le prochain token")
    
    next_token_probs = gr.Textbox(label="Probabilités du prochain token")
    
    with gr.Row():
        attention_plot = gr.Plot(label="Visualisation de l'attention")
        prob_plot = gr.Plot(label="Probabilités des tokens suivants")
    
    generate_button = gr.Button("Générer le prochain mot")
    generated_text = gr.Textbox(label="Texte généré")
    
    reset_button = gr.Button("Réinitialiser")
    
    # Événements pour la sélection du modèle
    model_family.change(
        update_model_type,
        inputs=[model_family],
        outputs=[model_type]
    )
    
    model_type.change(
        update_model_variation,
        inputs=[model_family, model_type],
        outputs=[model_variation]
    )
    
    model_variation.change(
        update_selected_model,
        inputs=[model_family, model_type, model_variation],
        outputs=[selected_model, language_dropdown]
    )
    
    load_button.click(
        load_model,
        inputs=[selected_model],
        outputs=[load_output, language_dropdown, temperature, top_p, top_k]
    )
    
    language_dropdown.change(
        set_language,
        inputs=[language_dropdown],
        outputs=[language_output]
    )
    
    analyze_button.click(
        analyze_next_token,
        inputs=[input_text, temperature, top_p, top_k],
        outputs=[next_token_probs, attention_plot, prob_plot]
    )
    
    generate_button.click(
        generate_text,
        inputs=[input_text, temperature, top_p, top_k],
        outputs=[generated_text]
    )
    
    reset_button.click(
        reset,
        outputs=[
            input_text, temperature, top_p, top_k,
            next_token_probs, attention_plot, prob_plot, generated_text,
            model_family, model_type, model_variation,
            selected_model, language_dropdown, language_output
        ]
    )

if __name__ == "__main__":
    demo.launch()