Upload run_libra.py
Browse files- libra/eval/run_libra.py +29 -10
libra/eval/run_libra.py
CHANGED
|
@@ -14,6 +14,21 @@ from io import BytesIO
|
|
| 14 |
from pydicom.pixel_data_handlers.util import apply_voi_lut
|
| 15 |
import datetime
|
| 16 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
|
| 18 |
def load_images(image_file):
|
| 19 |
"""
|
|
@@ -77,7 +92,7 @@ def load_images(image_file):
|
|
| 77 |
|
| 78 |
return image
|
| 79 |
|
| 80 |
-
def get_image_tensors(image_path, image_processor, model, device='
|
| 81 |
# Load and preprocess the images
|
| 82 |
if isinstance(image_path, str):
|
| 83 |
image = []
|
|
@@ -118,19 +133,24 @@ def libra_eval(
|
|
| 118 |
model_base=None,
|
| 119 |
image_file=None,
|
| 120 |
query=None,
|
| 121 |
-
conv_mode=
|
| 122 |
temperature=0.2,
|
| 123 |
top_p=None,
|
| 124 |
num_beams=1,
|
| 125 |
num_return_sequences=None,
|
| 126 |
length_penalty=1.0,
|
| 127 |
-
max_new_tokens=128
|
|
|
|
| 128 |
):
|
| 129 |
# Model
|
| 130 |
disable_torch_init()
|
| 131 |
|
| 132 |
-
|
| 133 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 134 |
|
| 135 |
qs = query
|
| 136 |
if model.config.mm_use_im_start_end:
|
|
@@ -151,7 +171,7 @@ def libra_eval(
|
|
| 151 |
conv.append_message(conv.roles[1], None)
|
| 152 |
prompt = conv.get_prompt()
|
| 153 |
|
| 154 |
-
input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).
|
| 155 |
attention_mask = torch.ones(input_ids.shape, dtype=torch.long)
|
| 156 |
pad_token_id = tokenizer.pad_token_id
|
| 157 |
|
|
@@ -162,7 +182,7 @@ def libra_eval(
|
|
| 162 |
stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids)
|
| 163 |
|
| 164 |
with torch.inference_mode():
|
| 165 |
-
|
| 166 |
if num_beams > 1:
|
| 167 |
output_ids = model.generate(
|
| 168 |
input_ids=input_ids,
|
|
@@ -192,7 +212,7 @@ def libra_eval(
|
|
| 192 |
pad_token_id=pad_token_id,
|
| 193 |
stopping_criteria=[stopping_criteria],
|
| 194 |
use_cache=True)
|
| 195 |
-
|
| 196 |
input_token_len = input_ids.shape[1]
|
| 197 |
n_diff_input_output = (input_ids != output_ids[:, :input_token_len]).sum().item()
|
| 198 |
|
|
@@ -205,8 +225,7 @@ def libra_eval(
|
|
| 205 |
if outputs.endswith(stop_str):
|
| 206 |
outputs = outputs[:-len(stop_str)]
|
| 207 |
outputs = outputs.strip()
|
| 208 |
-
|
| 209 |
-
print("outputs",outputs)
|
| 210 |
return outputs
|
| 211 |
|
| 212 |
if __name__ == "__main__":
|
|
|
|
| 14 |
from pydicom.pixel_data_handlers.util import apply_voi_lut
|
| 15 |
import datetime
|
| 16 |
|
| 17 |
+
def load_model(model_path, model_base=None):
|
| 18 |
+
"""
|
| 19 |
+
Load the model and return its components.
|
| 20 |
+
|
| 21 |
+
Args:
|
| 22 |
+
model_path (str): Path to the model.
|
| 23 |
+
model_base (str): Base model, if any.
|
| 24 |
+
|
| 25 |
+
Returns:
|
| 26 |
+
tuple: (tokenizer, model, image_processor, context_len)
|
| 27 |
+
"""
|
| 28 |
+
disable_torch_init()
|
| 29 |
+
model_name = get_model_name_from_path(model_path)
|
| 30 |
+
tokenizer, model, image_processor, context_len = load_pretrained_model(model_path, model_base, model_name)
|
| 31 |
+
return tokenizer, model, image_processor, context_len
|
| 32 |
|
| 33 |
def load_images(image_file):
|
| 34 |
"""
|
|
|
|
| 92 |
|
| 93 |
return image
|
| 94 |
|
| 95 |
+
def get_image_tensors(image_path, image_processor, model, device='cuda'):
|
| 96 |
# Load and preprocess the images
|
| 97 |
if isinstance(image_path, str):
|
| 98 |
image = []
|
|
|
|
| 133 |
model_base=None,
|
| 134 |
image_file=None,
|
| 135 |
query=None,
|
| 136 |
+
conv_mode=None,
|
| 137 |
temperature=0.2,
|
| 138 |
top_p=None,
|
| 139 |
num_beams=1,
|
| 140 |
num_return_sequences=None,
|
| 141 |
length_penalty=1.0,
|
| 142 |
+
max_new_tokens=128,
|
| 143 |
+
libra_model=None
|
| 144 |
):
|
| 145 |
# Model
|
| 146 |
disable_torch_init()
|
| 147 |
|
| 148 |
+
if libra_model is not None:
|
| 149 |
+
tokenizer, model, image_processor, context_len = libra_model
|
| 150 |
+
model_name = model.config._name_or_path
|
| 151 |
+
else:
|
| 152 |
+
tokenizer, model, image_processor, context_len = load_model(model_path, model_base)
|
| 153 |
+
model_name = get_model_name_from_path(model_path)
|
| 154 |
|
| 155 |
qs = query
|
| 156 |
if model.config.mm_use_im_start_end:
|
|
|
|
| 171 |
conv.append_message(conv.roles[1], None)
|
| 172 |
prompt = conv.get_prompt()
|
| 173 |
|
| 174 |
+
input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).cuda()
|
| 175 |
attention_mask = torch.ones(input_ids.shape, dtype=torch.long)
|
| 176 |
pad_token_id = tokenizer.pad_token_id
|
| 177 |
|
|
|
|
| 182 |
stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids)
|
| 183 |
|
| 184 |
with torch.inference_mode():
|
| 185 |
+
torch.cuda.empty_cache()
|
| 186 |
if num_beams > 1:
|
| 187 |
output_ids = model.generate(
|
| 188 |
input_ids=input_ids,
|
|
|
|
| 212 |
pad_token_id=pad_token_id,
|
| 213 |
stopping_criteria=[stopping_criteria],
|
| 214 |
use_cache=True)
|
| 215 |
+
|
| 216 |
input_token_len = input_ids.shape[1]
|
| 217 |
n_diff_input_output = (input_ids != output_ids[:, :input_token_len]).sum().item()
|
| 218 |
|
|
|
|
| 225 |
if outputs.endswith(stop_str):
|
| 226 |
outputs = outputs[:-len(stop_str)]
|
| 227 |
outputs = outputs.strip()
|
| 228 |
+
|
|
|
|
| 229 |
return outputs
|
| 230 |
|
| 231 |
if __name__ == "__main__":
|