TAB4IDC-InterventionDemo / utils /module_decoder.py
pooyanrg's picture
initial commit
ad4721b
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HugginFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch BERT model."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import copy
import json
import math
import logging
import tarfile
import tempfile
import shutil
import numpy as np
import torch
from torch import nn
from .file_utils import cached_path
from .until_config import PretrainedConfig
from .until_module import PreTrainedModel, LayerNorm, ACT2FN
logger = logging.getLogger(__name__)
PRETRAINED_MODEL_ARCHIVE_MAP = {}
CONFIG_NAME = 'decoder_config.json'
WEIGHTS_NAME = 'decoder_pytorch_model.bin'
class DecoderConfig(PretrainedConfig):
"""Configuration class to store the configuration of a `DecoderModel`.
"""
pretrained_model_archive_map = PRETRAINED_MODEL_ARCHIVE_MAP
config_name = CONFIG_NAME
weights_name = WEIGHTS_NAME
def __init__(self,
vocab_size_or_config_json_file,
hidden_size=768,
num_hidden_layers=12,
num_attention_heads=12,
intermediate_size=3072,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
type_vocab_size=2,
initializer_range=0.02,
max_target_embeddings=128,
num_decoder_layers=1):
"""Constructs DecoderConfig.
Args:
vocab_size_or_config_json_file: Vocabulary size of `inputs_ids` in `DecoderModel`.
hidden_size: Size of the encoder layers and the pooler layer.
num_hidden_layers: Number of hidden layers in the Transformer encoder.
num_attention_heads: Number of attention heads for each attention layer in
the Transformer encoder.
intermediate_size: The size of the "intermediate" (i.e., feed-forward)
layer in the Transformer encoder.
hidden_act: The non-linear activation function (function or string) in the
encoder and pooler. If string, "gelu", "relu" and "swish" are supported.
hidden_dropout_prob: The dropout probabilitiy for all fully connected
layers in the embeddings, encoder, and pooler.
attention_probs_dropout_prob: The dropout ratio for the attention
probabilities.
type_vocab_size: The vocabulary size of the `token_type_ids` passed into
`DecoderModel`.
initializer_range: The sttdev of the truncated_normal_initializer for
initializing all weight matrices.
max_target_embeddings: The maximum sequence length that this model might
ever be used with. Typically set this to something large just in case
(e.g., 512 or 1024 or 2048).
num_decoder_layers:
"""
if isinstance(vocab_size_or_config_json_file, str):
with open(vocab_size_or_config_json_file, "r", encoding='utf-8') as reader:
json_config = json.loads(reader.read())
for key, value in json_config.items():
self.__dict__[key] = value
elif isinstance(vocab_size_or_config_json_file, int):
self.vocab_size = vocab_size_or_config_json_file
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.hidden_act = hidden_act
self.intermediate_size = intermediate_size
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.type_vocab_size = type_vocab_size
self.initializer_range = initializer_range
self.max_target_embeddings = max_target_embeddings
self.num_decoder_layers = num_decoder_layers
else:
raise ValueError("First argument must be either a vocabulary size (int)"
"or the path to a pretrained model config file (str)")
class BertSelfOutput(nn.Module):
def __init__(self, config):
super(BertSelfOutput, self).__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.LayerNorm = LayerNorm(config.hidden_size, eps=1e-12)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states, input_tensor):
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.LayerNorm(hidden_states + input_tensor)
return hidden_states
class BertIntermediate(nn.Module):
def __init__(self, config):
super(BertIntermediate, self).__init__()
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
self.intermediate_act_fn = ACT2FN[config.hidden_act] \
if isinstance(config.hidden_act, str) else config.hidden_act
def forward(self, hidden_states):
hidden_states = self.dense(hidden_states)
hidden_states = self.intermediate_act_fn(hidden_states)
return hidden_states
class BertOutput(nn.Module):
def __init__(self, config):
super(BertOutput, self).__init__()
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
self.LayerNorm = LayerNorm(config.hidden_size, eps=1e-12)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states, input_tensor):
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.LayerNorm(hidden_states + input_tensor)
return hidden_states
class BertPredictionHeadTransform(nn.Module):
def __init__(self, config):
super(BertPredictionHeadTransform, self).__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.transform_act_fn = ACT2FN[config.hidden_act] \
if isinstance(config.hidden_act, str) else config.hidden_act
self.LayerNorm = LayerNorm(config.hidden_size, eps=1e-12)
def forward(self, hidden_states):
hidden_states = self.dense(hidden_states)
hidden_states = self.transform_act_fn(hidden_states)
hidden_states = self.LayerNorm(hidden_states)
return hidden_states
class BertLMPredictionHead(nn.Module):
def __init__(self, config, decoder_model_embedding_weights):
super(BertLMPredictionHead, self).__init__()
self.transform = BertPredictionHeadTransform(config)
# The output weights are the same as the input embeddings, but there is
# an output-only bias for each token.
self.decoder = nn.Linear(decoder_model_embedding_weights.size(1),
decoder_model_embedding_weights.size(0),
bias=False)
self.decoder.weight = decoder_model_embedding_weights
self.bias = nn.Parameter(torch.zeros(decoder_model_embedding_weights.size(0)))
def forward(self, hidden_states):
hidden_states = self.transform(hidden_states)
hidden_states = self.decoder(hidden_states) + self.bias
return hidden_states
class BertOnlyMLMHead(nn.Module):
def __init__(self, config, decoder_model_embedding_weights):
super(BertOnlyMLMHead, self).__init__()
self.predictions = BertLMPredictionHead(config, decoder_model_embedding_weights)
def forward(self, sequence_output):
prediction_scores = self.predictions(sequence_output)
return prediction_scores
class MultiHeadAttention(nn.Module):
''' Multi-Head Attention module '''
def __init__(self, config):
super(MultiHeadAttention, self).__init__()
if config.hidden_size % config.num_attention_heads != 0:
raise ValueError(
"The hidden size (%d) is not a multiple of the number of attention "
"heads (%d)" % (config.hidden_size, config.num_attention_heads))
self.num_attention_heads = config.num_attention_heads
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
self.all_head_size = self.num_attention_heads * self.attention_head_size
self.query = nn.Linear(config.hidden_size, self.all_head_size)
self.key = nn.Linear(config.hidden_size, self.all_head_size)
self.value = nn.Linear(config.hidden_size, self.all_head_size)
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
def transpose_for_scores(self, x):
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
x = x.view(*new_x_shape)
return x.permute(0, 2, 1, 3)
def forward(self, q, k, v, attention_mask):
mixed_query_layer = self.query(q)
mixed_key_layer = self.key(k)
mixed_value_layer = self.value(v)
query_layer = self.transpose_for_scores(mixed_query_layer)
key_layer = self.transpose_for_scores(mixed_key_layer)
value_layer = self.transpose_for_scores(mixed_value_layer)
# Take the dot product between "query" and "key" to get the raw attention scores.
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
# Apply the attention mask is (precomputed for all layers in BertModel forward() function)
attention_scores = attention_scores + attention_mask
# Normalize the attention scores to probabilities.
attention_probs = nn.Softmax(dim=-1)(attention_scores)
# This is actually dropping out entire tokens to attend to, which might
# seem a bit unusual, but is taken from the original Transformer paper.
attention_probs = self.dropout(attention_probs)
context_layer = torch.matmul(attention_probs, value_layer)
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
context_layer = context_layer.view(*new_context_layer_shape)
return context_layer, attention_scores
class PositionwiseFeedForward(nn.Module):
''' A two-feed-forward-layer module '''
def __init__(self, d_in, d_hid, dropout=0.1):
super().__init__()
self.w_1 = nn.Conv1d(d_in, d_hid, 1) # position-wise
self.w_2 = nn.Conv1d(d_hid, d_in, 1) # position-wise
self.layer_norm = nn.LayerNorm(d_in)
self.dropout = nn.Dropout(dropout)
def forward(self, x):
residual = x
output = x.transpose(1, 2)
output = self.w_2(ACT2FN["gelu"](self.w_1(output)))
output = output.transpose(1, 2)
output = self.dropout(output)
output = self.layer_norm(output + residual)
return output
class DecoderAttention(nn.Module):
def __init__(self, config):
super(DecoderAttention, self).__init__()
self.att = MultiHeadAttention(config)
self.output = BertSelfOutput(config)
def forward(self, q, k, v, attention_mask):
att_output, attention_probs = self.att(q, k, v, attention_mask)
attention_output = self.output(att_output, q)
return attention_output, attention_probs
class EncoderLayer(nn.Module):
def __init__(self, config):
super(EncoderLayer, self).__init__()
self.slf_attn = DecoderAttention(config)
self.intermediate = BertIntermediate(config)
self.output = BertOutput(config)
def forward(self, dec_input, slf_attn_mask=None):
slf_output, slf_att_scores = self.slf_attn(dec_input, dec_input, dec_input, slf_attn_mask)
intermediate_output = self.intermediate(slf_output)
dec_output = self.output(intermediate_output, slf_output)
return dec_output, slf_att_scores
class DecoderLayer(nn.Module):
def __init__(self, config):
super(DecoderLayer, self).__init__()
self.slf_attn = DecoderAttention(config)
self.enc_attn = DecoderAttention(config)
self.intermediate = BertIntermediate(config)
self.output = BertOutput(config)
def forward(self, dec_input, enc_output, slf_attn_mask=None, dec_enc_attn_mask=None):
slf_output, _ = self.slf_attn(dec_input, dec_input, dec_input, slf_attn_mask)
dec_output, dec_att_scores = self.enc_attn(slf_output, enc_output, enc_output, dec_enc_attn_mask)
intermediate_output = self.intermediate(dec_output)
dec_output = self.output(intermediate_output, dec_output)
return dec_output, dec_att_scores
class DecoderEmbeddings(nn.Module):
"""Construct the embeddings from word, position and token_type embeddings.
"""
def __init__(self, config, decoder_word_embeddings_weight, decoder_position_embeddings_weight):
super(DecoderEmbeddings, self).__init__()
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size)
self.position_embeddings = nn.Embedding(config.max_target_embeddings, config.hidden_size)
self.word_embeddings.weight = decoder_word_embeddings_weight
self.position_embeddings.weight = decoder_position_embeddings_weight
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
# any TensorFlow checkpoint file
self.LayerNorm = LayerNorm(config.hidden_size, eps=1e-12)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, input_ids):
seq_length = input_ids.size(1)
position_ids = torch.arange(seq_length, dtype=torch.long, device=input_ids.device)
position_ids = position_ids.unsqueeze(0).expand_as(input_ids)
words_embeddings = self.word_embeddings(input_ids)
position_embeddings = self.position_embeddings(position_ids)
embeddings = words_embeddings + position_embeddings
embeddings = self.LayerNorm(embeddings)
embeddings = self.dropout(embeddings)
return embeddings
class Encoder(nn.Module):
def __init__(self, config):
super(Encoder, self).__init__()
layer = EncoderLayer(config)
self.layer = nn.ModuleList([copy.deepcopy(layer) for _ in range(config.num_decoder_layers)])
def forward(self, hidden_states, self_attn_mask, output_all_encoded_layers=False):
dec_att_scores = None
all_encoder_layers = []
all_dec_att_probs = []
for layer_module in self.layer:
hidden_states, dec_att_scores = layer_module(hidden_states, self_attn_mask)
if output_all_encoded_layers:
all_encoder_layers.append(hidden_states)
all_dec_att_probs.append(dec_att_scores)
if not output_all_encoded_layers:
all_encoder_layers.append(hidden_states)
all_dec_att_probs.append(dec_att_scores)
return all_encoder_layers, all_dec_att_probs
class Decoder(nn.Module):
def __init__(self, config):
super(Decoder, self).__init__()
layer = DecoderLayer(config)
self.layer = nn.ModuleList([copy.deepcopy(layer) for _ in range(config.num_decoder_layers)])
def forward(self, hidden_states, encoder_outs, self_attn_mask, attention_mask, output_all_encoded_layers=False):
dec_att_scores = None
all_encoder_layers = []
all_dec_att_probs = []
for i, layer_module in enumerate(self.layer):
if isinstance(encoder_outs, list):
hidden_states, dec_att_scores = layer_module(hidden_states, encoder_outs[i], self_attn_mask, attention_mask)
else:
hidden_states, dec_att_scores = layer_module(hidden_states, encoder_outs, self_attn_mask, attention_mask)
if output_all_encoded_layers:
all_encoder_layers.append(hidden_states)
all_dec_att_probs.append(dec_att_scores)
if not output_all_encoded_layers:
all_encoder_layers.append(hidden_states)
all_dec_att_probs.append(dec_att_scores)
return all_encoder_layers, all_dec_att_probs
class DecoderClassifier(nn.Module):
def __init__(self, config, embedding_weights):
super(DecoderClassifier, self).__init__()
self.cls = BertOnlyMLMHead(config, embedding_weights)
def forward(self, hidden_states):
cls_scores = self.cls(hidden_states)
return cls_scores
class DecoderModel(PreTrainedModel):
"""
Transformer decoder consisting of *args.decoder_layers* layers. Each layer
is a :class:`TransformerDecoderLayer`.
Args:
args (argparse.Namespace): parsed command-line arguments
final_norm (bool, optional): apply layer norm to the output of the
final decoder layer (default: True).
"""
def __init__(self, config, decoder_word_embeddings_weight, decoder_position_embeddings_weight):
super(DecoderModel, self).__init__(config)
self.config = config
self.max_target_length = config.max_target_embeddings
self.embeddings = DecoderEmbeddings(config, decoder_word_embeddings_weight, decoder_position_embeddings_weight)
self.decoder = Decoder(config)
self.encoder = Encoder(config)
self.classifier = DecoderClassifier(config, decoder_word_embeddings_weight)
self.apply(self.init_weights)
def forward(self, input_ids, encoder_outs=None, answer_mask=None, encoder_mask=None):
"""
Args:
input_ids (LongTensor): previous decoder outputs of shape `(batch, tgt_len)`, for input feeding/teacher forcing
encoder_outs (Tensor, optional): output from the encoder, used for encoder-side attention
Returns:
tuple:
- the last decoder layer's output of shape `(batch, tgt_len, vocab)`
- the last decoder layer's attention weights of shape `(batch, tgt_len, src_len)`
"""
embedding_output = self.embeddings(input_ids)
extended_encoder_mask = encoder_mask.unsqueeze(1).unsqueeze(2) # b x 1 x 1 x ls
extended_encoder_mask = extended_encoder_mask.to(dtype=self.dtype) # fp16 compatibility
extended_encoder_mask = (1.0 - extended_encoder_mask) * -10000.0
extended_answer_mask = answer_mask.unsqueeze(1).unsqueeze(2)
extended_answer_mask = extended_answer_mask.to(dtype=self.dtype) # fp16 compatibility
sz_b, len_s, _ = embedding_output.size()
subsequent_mask = torch.triu(torch.ones((len_s, len_s), device=embedding_output.device, dtype=embedding_output.dtype), diagonal=1)
self_attn_mask = subsequent_mask.unsqueeze(0).expand(sz_b, -1, -1).unsqueeze(1) # b x 1 x ls x ls
slf_attn_mask = ((1.0 - extended_answer_mask) + self_attn_mask).gt(0).to(dtype=self.dtype)
self_attn_mask = slf_attn_mask * -10000.0
encoder_outs, _ = self.encoder(encoder_outs, extended_encoder_mask, output_all_encoded_layers=True)
# encoder_outs = encoder_outs[-1]
decoded_layers, dec_att_scores = self.decoder(embedding_output,
encoder_outs,
self_attn_mask,
extended_encoder_mask,
)
sequence_output = decoded_layers[-1]
cls_scores = self.classifier(sequence_output)
return cls_scores