Spaces:
Running
Running
# coding=utf-8 | |
# Copyright 2018 The Google AI Language Team Authors and The HugginFace Inc. team. | |
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""PyTorch BERT model.""" | |
from __future__ import absolute_import | |
from __future__ import division | |
from __future__ import print_function | |
import os | |
import copy | |
import json | |
import math | |
import logging | |
import tarfile | |
import tempfile | |
import shutil | |
import numpy as np | |
import torch | |
from torch import nn | |
from .file_utils import cached_path | |
from .until_config import PretrainedConfig | |
from .until_module import PreTrainedModel, LayerNorm, ACT2FN | |
logger = logging.getLogger(__name__) | |
PRETRAINED_MODEL_ARCHIVE_MAP = {} | |
CONFIG_NAME = 'decoder_config.json' | |
WEIGHTS_NAME = 'decoder_pytorch_model.bin' | |
class DecoderConfig(PretrainedConfig): | |
"""Configuration class to store the configuration of a `DecoderModel`. | |
""" | |
pretrained_model_archive_map = PRETRAINED_MODEL_ARCHIVE_MAP | |
config_name = CONFIG_NAME | |
weights_name = WEIGHTS_NAME | |
def __init__(self, | |
vocab_size_or_config_json_file, | |
hidden_size=768, | |
num_hidden_layers=12, | |
num_attention_heads=12, | |
intermediate_size=3072, | |
hidden_act="gelu", | |
hidden_dropout_prob=0.1, | |
attention_probs_dropout_prob=0.1, | |
type_vocab_size=2, | |
initializer_range=0.02, | |
max_target_embeddings=128, | |
num_decoder_layers=1): | |
"""Constructs DecoderConfig. | |
Args: | |
vocab_size_or_config_json_file: Vocabulary size of `inputs_ids` in `DecoderModel`. | |
hidden_size: Size of the encoder layers and the pooler layer. | |
num_hidden_layers: Number of hidden layers in the Transformer encoder. | |
num_attention_heads: Number of attention heads for each attention layer in | |
the Transformer encoder. | |
intermediate_size: The size of the "intermediate" (i.e., feed-forward) | |
layer in the Transformer encoder. | |
hidden_act: The non-linear activation function (function or string) in the | |
encoder and pooler. If string, "gelu", "relu" and "swish" are supported. | |
hidden_dropout_prob: The dropout probabilitiy for all fully connected | |
layers in the embeddings, encoder, and pooler. | |
attention_probs_dropout_prob: The dropout ratio for the attention | |
probabilities. | |
type_vocab_size: The vocabulary size of the `token_type_ids` passed into | |
`DecoderModel`. | |
initializer_range: The sttdev of the truncated_normal_initializer for | |
initializing all weight matrices. | |
max_target_embeddings: The maximum sequence length that this model might | |
ever be used with. Typically set this to something large just in case | |
(e.g., 512 or 1024 or 2048). | |
num_decoder_layers: | |
""" | |
if isinstance(vocab_size_or_config_json_file, str): | |
with open(vocab_size_or_config_json_file, "r", encoding='utf-8') as reader: | |
json_config = json.loads(reader.read()) | |
for key, value in json_config.items(): | |
self.__dict__[key] = value | |
elif isinstance(vocab_size_or_config_json_file, int): | |
self.vocab_size = vocab_size_or_config_json_file | |
self.hidden_size = hidden_size | |
self.num_hidden_layers = num_hidden_layers | |
self.num_attention_heads = num_attention_heads | |
self.hidden_act = hidden_act | |
self.intermediate_size = intermediate_size | |
self.hidden_dropout_prob = hidden_dropout_prob | |
self.attention_probs_dropout_prob = attention_probs_dropout_prob | |
self.type_vocab_size = type_vocab_size | |
self.initializer_range = initializer_range | |
self.max_target_embeddings = max_target_embeddings | |
self.num_decoder_layers = num_decoder_layers | |
else: | |
raise ValueError("First argument must be either a vocabulary size (int)" | |
"or the path to a pretrained model config file (str)") | |
class BertSelfOutput(nn.Module): | |
def __init__(self, config): | |
super(BertSelfOutput, self).__init__() | |
self.dense = nn.Linear(config.hidden_size, config.hidden_size) | |
self.LayerNorm = LayerNorm(config.hidden_size, eps=1e-12) | |
self.dropout = nn.Dropout(config.hidden_dropout_prob) | |
def forward(self, hidden_states, input_tensor): | |
hidden_states = self.dense(hidden_states) | |
hidden_states = self.dropout(hidden_states) | |
hidden_states = self.LayerNorm(hidden_states + input_tensor) | |
return hidden_states | |
class BertIntermediate(nn.Module): | |
def __init__(self, config): | |
super(BertIntermediate, self).__init__() | |
self.dense = nn.Linear(config.hidden_size, config.intermediate_size) | |
self.intermediate_act_fn = ACT2FN[config.hidden_act] \ | |
if isinstance(config.hidden_act, str) else config.hidden_act | |
def forward(self, hidden_states): | |
hidden_states = self.dense(hidden_states) | |
hidden_states = self.intermediate_act_fn(hidden_states) | |
return hidden_states | |
class BertOutput(nn.Module): | |
def __init__(self, config): | |
super(BertOutput, self).__init__() | |
self.dense = nn.Linear(config.intermediate_size, config.hidden_size) | |
self.LayerNorm = LayerNorm(config.hidden_size, eps=1e-12) | |
self.dropout = nn.Dropout(config.hidden_dropout_prob) | |
def forward(self, hidden_states, input_tensor): | |
hidden_states = self.dense(hidden_states) | |
hidden_states = self.dropout(hidden_states) | |
hidden_states = self.LayerNorm(hidden_states + input_tensor) | |
return hidden_states | |
class BertPredictionHeadTransform(nn.Module): | |
def __init__(self, config): | |
super(BertPredictionHeadTransform, self).__init__() | |
self.dense = nn.Linear(config.hidden_size, config.hidden_size) | |
self.transform_act_fn = ACT2FN[config.hidden_act] \ | |
if isinstance(config.hidden_act, str) else config.hidden_act | |
self.LayerNorm = LayerNorm(config.hidden_size, eps=1e-12) | |
def forward(self, hidden_states): | |
hidden_states = self.dense(hidden_states) | |
hidden_states = self.transform_act_fn(hidden_states) | |
hidden_states = self.LayerNorm(hidden_states) | |
return hidden_states | |
class BertLMPredictionHead(nn.Module): | |
def __init__(self, config, decoder_model_embedding_weights): | |
super(BertLMPredictionHead, self).__init__() | |
self.transform = BertPredictionHeadTransform(config) | |
# The output weights are the same as the input embeddings, but there is | |
# an output-only bias for each token. | |
self.decoder = nn.Linear(decoder_model_embedding_weights.size(1), | |
decoder_model_embedding_weights.size(0), | |
bias=False) | |
self.decoder.weight = decoder_model_embedding_weights | |
self.bias = nn.Parameter(torch.zeros(decoder_model_embedding_weights.size(0))) | |
def forward(self, hidden_states): | |
hidden_states = self.transform(hidden_states) | |
hidden_states = self.decoder(hidden_states) + self.bias | |
return hidden_states | |
class BertOnlyMLMHead(nn.Module): | |
def __init__(self, config, decoder_model_embedding_weights): | |
super(BertOnlyMLMHead, self).__init__() | |
self.predictions = BertLMPredictionHead(config, decoder_model_embedding_weights) | |
def forward(self, sequence_output): | |
prediction_scores = self.predictions(sequence_output) | |
return prediction_scores | |
class MultiHeadAttention(nn.Module): | |
''' Multi-Head Attention module ''' | |
def __init__(self, config): | |
super(MultiHeadAttention, self).__init__() | |
if config.hidden_size % config.num_attention_heads != 0: | |
raise ValueError( | |
"The hidden size (%d) is not a multiple of the number of attention " | |
"heads (%d)" % (config.hidden_size, config.num_attention_heads)) | |
self.num_attention_heads = config.num_attention_heads | |
self.attention_head_size = int(config.hidden_size / config.num_attention_heads) | |
self.all_head_size = self.num_attention_heads * self.attention_head_size | |
self.query = nn.Linear(config.hidden_size, self.all_head_size) | |
self.key = nn.Linear(config.hidden_size, self.all_head_size) | |
self.value = nn.Linear(config.hidden_size, self.all_head_size) | |
self.dropout = nn.Dropout(config.attention_probs_dropout_prob) | |
def transpose_for_scores(self, x): | |
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) | |
x = x.view(*new_x_shape) | |
return x.permute(0, 2, 1, 3) | |
def forward(self, q, k, v, attention_mask): | |
mixed_query_layer = self.query(q) | |
mixed_key_layer = self.key(k) | |
mixed_value_layer = self.value(v) | |
query_layer = self.transpose_for_scores(mixed_query_layer) | |
key_layer = self.transpose_for_scores(mixed_key_layer) | |
value_layer = self.transpose_for_scores(mixed_value_layer) | |
# Take the dot product between "query" and "key" to get the raw attention scores. | |
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) | |
attention_scores = attention_scores / math.sqrt(self.attention_head_size) | |
# Apply the attention mask is (precomputed for all layers in BertModel forward() function) | |
attention_scores = attention_scores + attention_mask | |
# Normalize the attention scores to probabilities. | |
attention_probs = nn.Softmax(dim=-1)(attention_scores) | |
# This is actually dropping out entire tokens to attend to, which might | |
# seem a bit unusual, but is taken from the original Transformer paper. | |
attention_probs = self.dropout(attention_probs) | |
context_layer = torch.matmul(attention_probs, value_layer) | |
context_layer = context_layer.permute(0, 2, 1, 3).contiguous() | |
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) | |
context_layer = context_layer.view(*new_context_layer_shape) | |
return context_layer, attention_scores | |
class PositionwiseFeedForward(nn.Module): | |
''' A two-feed-forward-layer module ''' | |
def __init__(self, d_in, d_hid, dropout=0.1): | |
super().__init__() | |
self.w_1 = nn.Conv1d(d_in, d_hid, 1) # position-wise | |
self.w_2 = nn.Conv1d(d_hid, d_in, 1) # position-wise | |
self.layer_norm = nn.LayerNorm(d_in) | |
self.dropout = nn.Dropout(dropout) | |
def forward(self, x): | |
residual = x | |
output = x.transpose(1, 2) | |
output = self.w_2(ACT2FN["gelu"](self.w_1(output))) | |
output = output.transpose(1, 2) | |
output = self.dropout(output) | |
output = self.layer_norm(output + residual) | |
return output | |
class DecoderAttention(nn.Module): | |
def __init__(self, config): | |
super(DecoderAttention, self).__init__() | |
self.att = MultiHeadAttention(config) | |
self.output = BertSelfOutput(config) | |
def forward(self, q, k, v, attention_mask): | |
att_output, attention_probs = self.att(q, k, v, attention_mask) | |
attention_output = self.output(att_output, q) | |
return attention_output, attention_probs | |
class EncoderLayer(nn.Module): | |
def __init__(self, config): | |
super(EncoderLayer, self).__init__() | |
self.slf_attn = DecoderAttention(config) | |
self.intermediate = BertIntermediate(config) | |
self.output = BertOutput(config) | |
def forward(self, dec_input, slf_attn_mask=None): | |
slf_output, slf_att_scores = self.slf_attn(dec_input, dec_input, dec_input, slf_attn_mask) | |
intermediate_output = self.intermediate(slf_output) | |
dec_output = self.output(intermediate_output, slf_output) | |
return dec_output, slf_att_scores | |
class DecoderLayer(nn.Module): | |
def __init__(self, config): | |
super(DecoderLayer, self).__init__() | |
self.slf_attn = DecoderAttention(config) | |
self.enc_attn = DecoderAttention(config) | |
self.intermediate = BertIntermediate(config) | |
self.output = BertOutput(config) | |
def forward(self, dec_input, enc_output, slf_attn_mask=None, dec_enc_attn_mask=None): | |
slf_output, _ = self.slf_attn(dec_input, dec_input, dec_input, slf_attn_mask) | |
dec_output, dec_att_scores = self.enc_attn(slf_output, enc_output, enc_output, dec_enc_attn_mask) | |
intermediate_output = self.intermediate(dec_output) | |
dec_output = self.output(intermediate_output, dec_output) | |
return dec_output, dec_att_scores | |
class DecoderEmbeddings(nn.Module): | |
"""Construct the embeddings from word, position and token_type embeddings. | |
""" | |
def __init__(self, config, decoder_word_embeddings_weight, decoder_position_embeddings_weight): | |
super(DecoderEmbeddings, self).__init__() | |
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size) | |
self.position_embeddings = nn.Embedding(config.max_target_embeddings, config.hidden_size) | |
self.word_embeddings.weight = decoder_word_embeddings_weight | |
self.position_embeddings.weight = decoder_position_embeddings_weight | |
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load | |
# any TensorFlow checkpoint file | |
self.LayerNorm = LayerNorm(config.hidden_size, eps=1e-12) | |
self.dropout = nn.Dropout(config.hidden_dropout_prob) | |
def forward(self, input_ids): | |
seq_length = input_ids.size(1) | |
position_ids = torch.arange(seq_length, dtype=torch.long, device=input_ids.device) | |
position_ids = position_ids.unsqueeze(0).expand_as(input_ids) | |
words_embeddings = self.word_embeddings(input_ids) | |
position_embeddings = self.position_embeddings(position_ids) | |
embeddings = words_embeddings + position_embeddings | |
embeddings = self.LayerNorm(embeddings) | |
embeddings = self.dropout(embeddings) | |
return embeddings | |
class Encoder(nn.Module): | |
def __init__(self, config): | |
super(Encoder, self).__init__() | |
layer = EncoderLayer(config) | |
self.layer = nn.ModuleList([copy.deepcopy(layer) for _ in range(config.num_decoder_layers)]) | |
def forward(self, hidden_states, self_attn_mask, output_all_encoded_layers=False): | |
dec_att_scores = None | |
all_encoder_layers = [] | |
all_dec_att_probs = [] | |
for layer_module in self.layer: | |
hidden_states, dec_att_scores = layer_module(hidden_states, self_attn_mask) | |
if output_all_encoded_layers: | |
all_encoder_layers.append(hidden_states) | |
all_dec_att_probs.append(dec_att_scores) | |
if not output_all_encoded_layers: | |
all_encoder_layers.append(hidden_states) | |
all_dec_att_probs.append(dec_att_scores) | |
return all_encoder_layers, all_dec_att_probs | |
class Decoder(nn.Module): | |
def __init__(self, config): | |
super(Decoder, self).__init__() | |
layer = DecoderLayer(config) | |
self.layer = nn.ModuleList([copy.deepcopy(layer) for _ in range(config.num_decoder_layers)]) | |
def forward(self, hidden_states, encoder_outs, self_attn_mask, attention_mask, output_all_encoded_layers=False): | |
dec_att_scores = None | |
all_encoder_layers = [] | |
all_dec_att_probs = [] | |
for i, layer_module in enumerate(self.layer): | |
if isinstance(encoder_outs, list): | |
hidden_states, dec_att_scores = layer_module(hidden_states, encoder_outs[i], self_attn_mask, attention_mask) | |
else: | |
hidden_states, dec_att_scores = layer_module(hidden_states, encoder_outs, self_attn_mask, attention_mask) | |
if output_all_encoded_layers: | |
all_encoder_layers.append(hidden_states) | |
all_dec_att_probs.append(dec_att_scores) | |
if not output_all_encoded_layers: | |
all_encoder_layers.append(hidden_states) | |
all_dec_att_probs.append(dec_att_scores) | |
return all_encoder_layers, all_dec_att_probs | |
class DecoderClassifier(nn.Module): | |
def __init__(self, config, embedding_weights): | |
super(DecoderClassifier, self).__init__() | |
self.cls = BertOnlyMLMHead(config, embedding_weights) | |
def forward(self, hidden_states): | |
cls_scores = self.cls(hidden_states) | |
return cls_scores | |
class DecoderModel(PreTrainedModel): | |
""" | |
Transformer decoder consisting of *args.decoder_layers* layers. Each layer | |
is a :class:`TransformerDecoderLayer`. | |
Args: | |
args (argparse.Namespace): parsed command-line arguments | |
final_norm (bool, optional): apply layer norm to the output of the | |
final decoder layer (default: True). | |
""" | |
def __init__(self, config, decoder_word_embeddings_weight, decoder_position_embeddings_weight): | |
super(DecoderModel, self).__init__(config) | |
self.config = config | |
self.max_target_length = config.max_target_embeddings | |
self.embeddings = DecoderEmbeddings(config, decoder_word_embeddings_weight, decoder_position_embeddings_weight) | |
self.decoder = Decoder(config) | |
self.encoder = Encoder(config) | |
self.classifier = DecoderClassifier(config, decoder_word_embeddings_weight) | |
self.apply(self.init_weights) | |
def forward(self, input_ids, encoder_outs=None, answer_mask=None, encoder_mask=None): | |
""" | |
Args: | |
input_ids (LongTensor): previous decoder outputs of shape `(batch, tgt_len)`, for input feeding/teacher forcing | |
encoder_outs (Tensor, optional): output from the encoder, used for encoder-side attention | |
Returns: | |
tuple: | |
- the last decoder layer's output of shape `(batch, tgt_len, vocab)` | |
- the last decoder layer's attention weights of shape `(batch, tgt_len, src_len)` | |
""" | |
embedding_output = self.embeddings(input_ids) | |
extended_encoder_mask = encoder_mask.unsqueeze(1).unsqueeze(2) # b x 1 x 1 x ls | |
extended_encoder_mask = extended_encoder_mask.to(dtype=self.dtype) # fp16 compatibility | |
extended_encoder_mask = (1.0 - extended_encoder_mask) * -10000.0 | |
extended_answer_mask = answer_mask.unsqueeze(1).unsqueeze(2) | |
extended_answer_mask = extended_answer_mask.to(dtype=self.dtype) # fp16 compatibility | |
sz_b, len_s, _ = embedding_output.size() | |
subsequent_mask = torch.triu(torch.ones((len_s, len_s), device=embedding_output.device, dtype=embedding_output.dtype), diagonal=1) | |
self_attn_mask = subsequent_mask.unsqueeze(0).expand(sz_b, -1, -1).unsqueeze(1) # b x 1 x ls x ls | |
slf_attn_mask = ((1.0 - extended_answer_mask) + self_attn_mask).gt(0).to(dtype=self.dtype) | |
self_attn_mask = slf_attn_mask * -10000.0 | |
encoder_outs, _ = self.encoder(encoder_outs, extended_encoder_mask, output_all_encoded_layers=True) | |
# encoder_outs = encoder_outs[-1] | |
decoded_layers, dec_att_scores = self.decoder(embedding_output, | |
encoder_outs, | |
self_attn_mask, | |
extended_encoder_mask, | |
) | |
sequence_output = decoded_layers[-1] | |
cls_scores = self.classifier(sequence_output) | |
return cls_scores | |