File size: 12,213 Bytes
815b0dc
 
 
1fffe05
815b0dc
1873be0
815b0dc
 
1fffe05
 
 
815b0dc
 
 
 
1873be0
815b0dc
bca2446
815b0dc
 
 
 
53034cd
 
 
815b0dc
 
 
 
 
 
 
 
 
 
 
 
 
bca2446
53034cd
1fffe05
815b0dc
 
2f00a93
815b0dc
 
 
1fffe05
 
815b0dc
2f00a93
815b0dc
 
50cb770
 
74236d8
 
 
 
 
d812604
 
53034cd
 
 
 
 
 
 
444518c
53034cd
 
 
 
 
 
 
bca2446
 
 
 
815b0dc
 
 
 
 
 
 
 
 
 
bca2446
815b0dc
 
 
53034cd
 
815b0dc
1fffe05
815b0dc
 
bca2446
53034cd
4be0753
bca2446
 
2f00a93
bca2446
 
 
4be0753
 
bca2446
2f00a93
bca2446
 
50cb770
 
 
d812604
 
53034cd
 
 
 
 
 
ed00fce
 
53034cd
 
 
 
 
 
 
 
 
 
 
bca2446
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d812604
bca2446
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
53034cd
 
bca2446
4be0753
bca2446
 
815b0dc
bca2446
 
 
 
815b0dc
 
 
 
 
 
 
 
 
74236d8
 
e29cf37
815b0dc
 
 
e29cf37
 
 
 
 
 
 
 
 
 
815b0dc
e29cf37
 
 
 
 
 
 
 
 
 
 
 
bca2446
 
 
 
815b0dc
 
 
 
 
4be0753
 
53034cd
815b0dc
53034cd
444518c
 
 
 
53034cd
 
 
815b0dc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
import glob
import json
import os
import time
from dataclasses import dataclass
from datetime import datetime

import pandas as pd
from loguru import logger

from .download import snapshot_download


@dataclass
class Leaderboard:
    end_date: datetime
    eval_higher_is_better: bool
    max_selected_submissions: int
    competition_id: str
    autotrain_token: str

    def __post_init__(self):
        self._refresh_columns()

    def _refresh_columns(self):
        self.private_columns = [
            "rank",
            "name",
            "private_score",
            "submission_datetime",
        ]
        self.public_columns = [
            "rank",
            "name",
            "public_score",
            "submission_datetime",
        ]

    def _process_public_lb(self):
        self._refresh_columns()
        start_time = time.time()
        submissions_folder = snapshot_download(
            repo_id=self.competition_id,
            allow_patterns="submission_info/*.json",
            use_auth_token=self.autotrain_token,
            repo_type="dataset",
        )
        logger.info(f"Downloaded submissions in {time.time() - start_time} seconds")
        start_time = time.time()
        submissions = []
        for submission in glob.glob(os.path.join(submissions_folder, "submission_info", "*.json")):
            with open(submission, "r") as f:
                submission_info = json.load(f)
            # only select submissions that are done
            submission_info["submissions"] = [sub for sub in submission_info["submissions"] if sub["status"] == "done"]
            submission_info["submissions"] = [
                sub
                for sub in submission_info["submissions"]
                if datetime.strptime(sub["date"], "%Y-%m-%d") < self.end_date
            ]
            if len(submission_info["submissions"]) == 0:
                continue
            other_scores = []
            if isinstance(submission_info["submissions"][0]["public_score"], dict):
                # get keys of the dict
                score_keys = list(submission_info["submissions"][0]["public_score"].keys())
                # get the first key after sorting
                score_key = sorted(score_keys)[0]
                other_scores = [f"public_score_{k}" for k in score_keys if k != score_key]

                self.public_columns.extend(other_scores)
                for _sub in submission_info["submissions"]:
                    for skey in score_keys:
                        if skey != score_key:
                            _sub[f"public_score_{skey}"] = _sub["public_score"][skey]
                    _sub["public_score"] = _sub["public_score"][score_key]

            submission_info["submissions"].sort(
                key=lambda x: x["public_score"],
                reverse=True if self.eval_higher_is_better else False,
            )
            # select only the best submission
            submission_info["submissions"] = submission_info["submissions"][0]
            temp_info = {
                "id": submission_info["id"],
                "name": submission_info["name"],
                "submission_id": submission_info["submissions"]["submission_id"],
                "submission_comment": submission_info["submissions"]["submission_comment"],
                "status": submission_info["submissions"]["status"],
                "selected": submission_info["submissions"]["selected"],
                "public_score": submission_info["submissions"]["public_score"],
                # "private_score": submission_info["submissions"]["private_score"],
                "submission_date": submission_info["submissions"]["date"],
                "submission_time": submission_info["submissions"]["time"],
            }
            for score in other_scores:
                temp_info[score] = submission_info["submissions"][score]
            submissions.append(temp_info)
        logger.info(f"Processed submissions in {time.time() - start_time} seconds")
        return submissions

    def _process_private_lb(self):
        self._refresh_columns()
        start_time = time.time()
        submissions_folder = snapshot_download(
            repo_id=self.competition_id,
            allow_patterns="submission_info/*.json",
            use_auth_token=self.autotrain_token,
            repo_type="dataset",
        )
        logger.info(f"Downloaded submissions in {time.time() - start_time} seconds")
        start_time = time.time()
        submissions = []
        for submission in glob.glob(os.path.join(submissions_folder, "submission_info", "*.json")):
            with open(submission, "r") as f:
                submission_info = json.load(f)
                submission_info["submissions"] = [
                    sub for sub in submission_info["submissions"] if sub["status"] == "done"
                ]
                if len(submission_info["submissions"]) == 0:
                    continue
                other_scores = []
                if isinstance(submission_info["submissions"][0]["public_score"], dict):
                    # get keys of the dict
                    score_keys = list(submission_info["submissions"][0]["public_score"].keys())
                    # get the first key after sorting
                    score_key = sorted(score_keys)[0]
                    other_scores = [f"private_score_{k}" for k in score_keys if k != score_key]
                    self.private_columns.extend(other_scores)
                    for _sub in submission_info["submissions"]:
                        for skey in score_keys:
                            if skey != score_key:
                                _sub[f"public_score_{skey}"] = _sub["public_score"][skey]
                        _sub["public_score"] = _sub["public_score"][score_key]

                    for _sub in submission_info["submissions"]:
                        for skey in score_keys:
                            if skey != score_key:
                                _sub[f"private_score_{skey}"] = _sub["private_score"][skey]
                        _sub["private_score"] = _sub["private_score"][score_key]
                # count the number of submissions which are selected
                selected_submissions = 0
                for sub in submission_info["submissions"]:
                    if sub["selected"]:
                        selected_submissions += 1
                if selected_submissions == 0:
                    # select submissions with best public score
                    submission_info["submissions"].sort(
                        key=lambda x: x["public_score"],
                        reverse=True if self.eval_higher_is_better else False,
                    )
                    # select only the best submission
                    submission_info["submissions"] = submission_info["submissions"][0]
                elif selected_submissions == self.max_selected_submissions:
                    # select only the selected submissions
                    submission_info["submissions"] = [sub for sub in submission_info["submissions"] if sub["selected"]]
                    # sort by private score
                    submission_info["submissions"].sort(
                        key=lambda x: x["private_score"],
                        reverse=True if self.eval_higher_is_better else False,
                    )
                    # select only the best submission
                    submission_info["submissions"] = submission_info["submissions"][0]
                else:
                    temp_selected_submissions = [sub for sub in submission_info["submissions"] if sub["selected"]]
                    temp_best_public_submissions = [
                        sub for sub in submission_info["submissions"] if not sub["selected"]
                    ]
                    temp_best_public_submissions.sort(
                        key=lambda x: x["public_score"],
                        reverse=True if self.eval_higher_is_better else False,
                    )
                    missing_candidates = self.max_selected_submissions - len(temp_selected_submissions)
                    temp_best_public_submissions = temp_best_public_submissions[:missing_candidates]
                    submission_info["submissions"] = temp_selected_submissions + temp_best_public_submissions
                    submission_info["submissions"].sort(
                        key=lambda x: x["private_score"],
                        reverse=True if self.eval_higher_is_better else False,
                    )
                    submission_info["submissions"] = submission_info["submissions"][0]

                temp_info = {
                    "id": submission_info["id"],
                    "name": submission_info["name"],
                    "submission_id": submission_info["submissions"]["submission_id"],
                    "submission_comment": submission_info["submissions"]["submission_comment"],
                    "status": submission_info["submissions"]["status"],
                    "selected": submission_info["submissions"]["selected"],
                    "private_score": submission_info["submissions"]["private_score"],
                    "submission_date": submission_info["submissions"]["date"],
                    "submission_time": submission_info["submissions"]["time"],
                }
                for score in other_scores:
                    temp_info[score] = submission_info["submissions"][score]
                submissions.append(temp_info)
        logger.info(f"Processed submissions in {time.time() - start_time} seconds")
        return submissions

    def fetch(self, private=False):
        if private:
            submissions = self._process_private_lb()
        else:
            submissions = self._process_public_lb()

        if len(submissions) == 0:
            return pd.DataFrame()

        df = pd.DataFrame(submissions)
        # convert submission date and time to datetime
        df["submission_datetime"] = pd.to_datetime(
            df["submission_date"] + " " + df["submission_time"], format="%Y-%m-%d %H:%M:%S"
        )
        # only keep submissions before the end date
        df = df[df["submission_datetime"] < self.end_date].reset_index(drop=True)

        # sort by submission datetime
        # sort by public score and submission datetime
        if self.eval_higher_is_better:
            if private:
                df = df.sort_values(
                    by=["private_score", "submission_datetime"],
                    ascending=[False, True],
                )
            else:
                df = df.sort_values(
                    by=["public_score", "submission_datetime"],
                    ascending=[False, True],
                )
        else:
            if private:
                df = df.sort_values(
                    by=["private_score", "submission_datetime"],
                    ascending=[True, True],
                )
            else:
                df = df.sort_values(
                    by=["public_score", "submission_datetime"],
                    ascending=[True, True],
                )

        # only keep 4 significant digits in the score
        if private:
            df["private_score"] = df["private_score"].apply(lambda x: round(x, 4))
        else:
            df["public_score"] = df["public_score"].apply(lambda x: round(x, 4))

        # reset index
        df = df.reset_index(drop=True)
        df["rank"] = df.index + 1

        # convert datetime column to string
        df["submission_datetime"] = df["submission_datetime"].dt.strftime("%Y-%m-%d %H:%M:%S")
        logger.info(df)
        columns = self.public_columns if not private else self.private_columns
        logger.info(columns)
        # remove duplicate columns
        # ['rank', 'name', 'public_score', 'submission_datetime', 'public_score_track1', 'public_score_track1', 'public_score_track1', 'public_score_track1']
        columns = list(dict.fromkeys(columns))

        # send submission_datetime to the end
        columns.remove("submission_datetime")
        columns.append("submission_datetime")
        return df[columns]