File size: 9,159 Bytes
815b0dc
 
 
1fffe05
815b0dc
1873be0
815b0dc
 
42c2745
1fffe05
 
0ec6e70
 
815b0dc
 
 
1873be0
815b0dc
bca2446
815b0dc
42c2745
0ec6e70
815b0dc
 
0ec6e70
815b0dc
bca2446
1fffe05
815b0dc
 
2f00a93
42c2745
815b0dc
 
1fffe05
 
815b0dc
2f00a93
a2fa160
815b0dc
50cb770
a2fa160
0ec6e70
a2fa160
74236d8
 
 
a2fa160
74236d8
d812604
 
53034cd
0ec6e70
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1fffe05
815b0dc
 
bca2446
4be0753
bca2446
 
2f00a93
42c2745
bca2446
 
4be0753
 
bca2446
2f00a93
a2fa160
bca2446
50cb770
0ec6e70
50cb770
d812604
 
53034cd
0ec6e70
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bca2446
 
0ec6e70
bca2446
 
0ec6e70
bca2446
 
0ec6e70
 
bca2446
 
0ec6e70
 
 
bca2446
0ec6e70
bca2446
0ec6e70
 
bca2446
 
0ec6e70
bca2446
0ec6e70
 
bca2446
0ec6e70
bca2446
0ec6e70
 
 
 
 
 
 
 
 
4be0753
bca2446
 
815b0dc
bca2446
 
 
 
815b0dc
 
 
 
 
a2fa160
 
 
 
74236d8
 
e29cf37
815b0dc
 
 
e29cf37
 
0ec6e70
e29cf37
 
 
 
0ec6e70
e29cf37
 
815b0dc
e29cf37
 
0ec6e70
e29cf37
 
 
 
0ec6e70
e29cf37
 
 
0ec6e70
 
 
 
 
815b0dc
 
 
 
 
4be0753
 
444518c
53034cd
0ec6e70
53034cd
 
0ec6e70
 
 
 
 
 
 
42c2745
 
 
 
 
 
 
 
 
 
 
 
0ec6e70
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
import glob
import json
import os
import time
from dataclasses import dataclass
from datetime import datetime

import pandas as pd
from huggingface_hub import hf_hub_download, snapshot_download
from loguru import logger

from competitions.enums import SubmissionStatus


@dataclass
class Leaderboard:
    end_date: datetime
    eval_higher_is_better: bool
    max_selected_submissions: int
    competition_id: str
    token: str
    scoring_metric: str

    def __post_init__(self):
        self.non_score_columns = ["id", "submission_datetime"]

    def _process_public_lb(self):
        start_time = time.time()
        submissions_folder = snapshot_download(
            repo_id=self.competition_id,
            allow_patterns="submission_info/*.json",
            use_auth_token=self.token,
            repo_type="dataset",
        )
        logger.info(f"Downloaded submissions in {time.time() - start_time} seconds")
        start_time = time.time()
        submissions = []
        for submission in glob.glob(os.path.join(submissions_folder, "submission_info", "*.json")):
            with open(submission, "r", encoding="utf-8") as f:
                submission_info = json.load(f)
            # only select submissions that are done
            submission_info["submissions"] = [
                sub for sub in submission_info["submissions"] if sub["status"] == SubmissionStatus.SUCCESS.value
            ]
            submission_info["submissions"] = [
                sub
                for sub in submission_info["submissions"]
                if datetime.strptime(sub["datetime"], "%Y-%m-%d %H:%M:%S") < self.end_date
            ]
            if len(submission_info["submissions"]) == 0:
                continue

            user_id = submission_info["id"]
            user_submissions = []
            for sub in submission_info["submissions"]:
                _sub = {
                    "id": user_id,
                    # "submission_id": sub["submission_id"],
                    # "submission_comment": sub["submission_comment"],
                    # "status": sub["status"],
                    # "selected": sub["selected"],
                }
                for k, v in sub["public_score"].items():
                    _sub[k] = v
                _sub["submission_datetime"] = sub["datetime"]
                user_submissions.append(_sub)

            user_submissions.sort(key=lambda x: x[self.scoring_metric], reverse=self.eval_higher_is_better)
            best_user_submission = user_submissions[0]
            submissions.append(best_user_submission)
        logger.info(f"Processed submissions in {time.time() - start_time} seconds")
        return submissions

    def _process_private_lb(self):
        start_time = time.time()
        submissions_folder = snapshot_download(
            repo_id=self.competition_id,
            allow_patterns="submission_info/*.json",
            use_auth_token=self.token,
            repo_type="dataset",
        )
        logger.info(f"Downloaded submissions in {time.time() - start_time} seconds")
        start_time = time.time()
        submissions = []
        for submission in glob.glob(os.path.join(submissions_folder, "submission_info", "*.json")):
            with open(submission, "r", encoding="utf-8") as f:
                submission_info = json.load(f)
                submission_info["submissions"] = [
                    sub for sub in submission_info["submissions"] if sub["status"] == SubmissionStatus.SUCCESS.value
                ]
                if len(submission_info["submissions"]) == 0:
                    continue

                user_id = submission_info["id"]
                user_submissions = []
                for sub in submission_info["submissions"]:
                    _sub = {
                        "id": user_id,
                        # "submission_id": sub["submission_id"],
                        # "submission_comment": sub["submission_comment"],
                        # "status": sub["status"],
                        "selected": sub["selected"],
                    }
                    for k, v in sub["public_score"].items():
                        _sub[f"public_{k}"] = v
                    for k, v in sub["private_score"].items():
                        _sub[f"private_{k}"] = v
                    _sub["submission_datetime"] = sub["datetime"]
                    user_submissions.append(_sub)

                # count the number of submissions which are selected
                selected_submissions = 0
                for sub in user_submissions:
                    if sub["selected"]:
                        selected_submissions += 1

                if selected_submissions == 0:
                    # select submissions with best public score
                    user_submissions.sort(
                        key=lambda x: x[f"public_{self.scoring_metric}"], reverse=self.eval_higher_is_better
                    )
                    # select only the best submission
                    best_user_submission = user_submissions[0]

                elif selected_submissions <= self.max_selected_submissions:
                    # select only the selected submissions
                    user_submissions = [sub for sub in user_submissions if sub["selected"]]
                    # sort by private score
                    user_submissions.sort(
                        key=lambda x: x[f"private_{self.scoring_metric}"], reverse=self.eval_higher_is_better
                    )
                    # select only the best submission
                    best_user_submission = user_submissions[0]
                else:
                    logger.warning(
                        f"User {user_id} has more than {self.max_selected_submissions} selected submissions. Skipping user..."
                    )
                    continue

                # remove all keys that start with "public_"
                best_user_submission = {k: v for k, v in best_user_submission.items() if not k.startswith("public_")}

                # remove private_ from the keys
                best_user_submission = {k.replace("private_", ""): v for k, v in best_user_submission.items()}

                # remove selected key
                best_user_submission.pop("selected")
                submissions.append(best_user_submission)
        logger.info(f"Processed submissions in {time.time() - start_time} seconds")
        return submissions

    def fetch(self, private=False):
        if private:
            submissions = self._process_private_lb()
        else:
            submissions = self._process_public_lb()

        if len(submissions) == 0:
            return pd.DataFrame()

        df = pd.DataFrame(submissions)

        # convert submission datetime to pandas datetime
        df["submission_datetime"] = pd.to_datetime(df["submission_datetime"], format="%Y-%m-%d %H:%M:%S")

        # only keep submissions before the end date
        df = df[df["submission_datetime"] < self.end_date].reset_index(drop=True)

        # sort by submission datetime
        # sort by public score and submission datetime
        if self.eval_higher_is_better:
            if private:
                df = df.sort_values(
                    by=[self.scoring_metric, "submission_datetime"],
                    ascending=[False, True],
                )
            else:
                df = df.sort_values(
                    by=[self.scoring_metric, "submission_datetime"],
                    ascending=[False, True],
                )
        else:
            if private:
                df = df.sort_values(
                    by=[self.scoring_metric, "submission_datetime"],
                    ascending=[True, True],
                )
            else:
                df = df.sort_values(
                    by=[self.scoring_metric, "submission_datetime"],
                    ascending=[True, True],
                )

        # only keep 4 significant digits in the scores
        for col in df.columns:
            if col in self.non_score_columns:
                continue
            df[col] = df[col].round(4)

        # reset index
        df = df.reset_index(drop=True)
        df["rank"] = df.index + 1

        # convert datetime column to string
        df["submission_datetime"] = df["submission_datetime"].dt.strftime("%Y-%m-%d %H:%M:%S")

        # send submission_datetime to the end
        columns = df.columns.tolist()
        columns.remove("submission_datetime")
        columns.append("submission_datetime")
        df = df[columns]

        # send rank to first position
        columns = df.columns.tolist()
        columns.remove("rank")
        columns = ["rank"] + columns
        df = df[columns]

        team_metadata = hf_hub_download(
            repo_id=self.competition_id,
            filename="teams.json",
            token=self.token,
            repo_type="dataset",
        )
        with open(team_metadata, "r", encoding="utf-8") as f:
            team_metadata = json.load(f)

        df["id"] = df["id"].apply(lambda x: team_metadata[x]["name"])

        return df