Abhishek Thakur
fix private lb multi metrics
ed00fce
raw
history blame
12.2 kB
import glob
import json
import os
import time
from dataclasses import dataclass
from datetime import datetime
import pandas as pd
from loguru import logger
from .download import snapshot_download
@dataclass
class Leaderboard:
end_date: datetime
eval_higher_is_better: bool
max_selected_submissions: int
competition_id: str
autotrain_token: str
def __post_init__(self):
self._refresh_columns()
def _refresh_columns(self):
self.private_columns = [
"rank",
"name",
"private_score",
"submission_datetime",
]
self.public_columns = [
"rank",
"name",
"public_score",
"submission_datetime",
]
def _process_public_lb(self):
self._refresh_columns()
start_time = time.time()
submissions_folder = snapshot_download(
repo_id=self.competition_id,
allow_patterns="submission_info/*.json",
use_auth_token=self.autotrain_token,
repo_type="dataset",
)
logger.info(f"Downloaded submissions in {time.time() - start_time} seconds")
start_time = time.time()
submissions = []
for submission in glob.glob(os.path.join(submissions_folder, "submission_info", "*.json")):
with open(submission, "r") as f:
submission_info = json.load(f)
# only select submissions that are done
submission_info["submissions"] = [sub for sub in submission_info["submissions"] if sub["status"] == "done"]
submission_info["submissions"] = [
sub
for sub in submission_info["submissions"]
if datetime.strptime(sub["date"], "%Y-%m-%d") < self.end_date
]
if len(submission_info["submissions"]) == 0:
continue
other_scores = []
if isinstance(submission_info["submissions"][0]["public_score"], dict):
# get keys of the dict
score_keys = list(submission_info["submissions"][0]["public_score"].keys())
# get the first key after sorting
score_key = sorted(score_keys)[0]
other_scores = [f"public_score_{k}" for k in score_keys if k != score_key]
self.public_columns.extend(other_scores)
for _sub in submission_info["submissions"]:
for skey in score_keys:
if skey != score_key:
_sub[f"public_score_{skey}"] = _sub["public_score"][skey]
_sub["public_score"] = _sub["public_score"][score_key]
submission_info["submissions"].sort(
key=lambda x: x["public_score"],
reverse=True if self.eval_higher_is_better else False,
)
# select only the best submission
submission_info["submissions"] = submission_info["submissions"][0]
temp_info = {
"id": submission_info["id"],
"name": submission_info["name"],
"submission_id": submission_info["submissions"]["submission_id"],
"submission_comment": submission_info["submissions"]["submission_comment"],
"status": submission_info["submissions"]["status"],
"selected": submission_info["submissions"]["selected"],
"public_score": submission_info["submissions"]["public_score"],
# "private_score": submission_info["submissions"]["private_score"],
"submission_date": submission_info["submissions"]["date"],
"submission_time": submission_info["submissions"]["time"],
}
for score in other_scores:
temp_info[score] = submission_info["submissions"][score]
submissions.append(temp_info)
logger.info(f"Processed submissions in {time.time() - start_time} seconds")
return submissions
def _process_private_lb(self):
self._refresh_columns()
start_time = time.time()
submissions_folder = snapshot_download(
repo_id=self.competition_id,
allow_patterns="submission_info/*.json",
use_auth_token=self.autotrain_token,
repo_type="dataset",
)
logger.info(f"Downloaded submissions in {time.time() - start_time} seconds")
start_time = time.time()
submissions = []
for submission in glob.glob(os.path.join(submissions_folder, "submission_info", "*.json")):
with open(submission, "r") as f:
submission_info = json.load(f)
submission_info["submissions"] = [
sub for sub in submission_info["submissions"] if sub["status"] == "done"
]
if len(submission_info["submissions"]) == 0:
continue
other_scores = []
if isinstance(submission_info["submissions"][0]["public_score"], dict):
# get keys of the dict
score_keys = list(submission_info["submissions"][0]["public_score"].keys())
# get the first key after sorting
score_key = sorted(score_keys)[0]
other_scores = [f"private_score_{k}" for k in score_keys if k != score_key]
self.private_columns.extend(other_scores)
for _sub in submission_info["submissions"]:
for skey in score_keys:
if skey != score_key:
_sub[f"public_score_{skey}"] = _sub["public_score"][skey]
_sub["public_score"] = _sub["public_score"][score_key]
for _sub in submission_info["submissions"]:
for skey in score_keys:
if skey != score_key:
_sub[f"private_score_{skey}"] = _sub["private_score"][skey]
_sub["private_score"] = _sub["private_score"][score_key]
# count the number of submissions which are selected
selected_submissions = 0
for sub in submission_info["submissions"]:
if sub["selected"]:
selected_submissions += 1
if selected_submissions == 0:
# select submissions with best public score
submission_info["submissions"].sort(
key=lambda x: x["public_score"],
reverse=True if self.eval_higher_is_better else False,
)
# select only the best submission
submission_info["submissions"] = submission_info["submissions"][0]
elif selected_submissions == self.max_selected_submissions:
# select only the selected submissions
submission_info["submissions"] = [sub for sub in submission_info["submissions"] if sub["selected"]]
# sort by private score
submission_info["submissions"].sort(
key=lambda x: x["private_score"],
reverse=True if self.eval_higher_is_better else False,
)
# select only the best submission
submission_info["submissions"] = submission_info["submissions"][0]
else:
temp_selected_submissions = [sub for sub in submission_info["submissions"] if sub["selected"]]
temp_best_public_submissions = [
sub for sub in submission_info["submissions"] if not sub["selected"]
]
temp_best_public_submissions.sort(
key=lambda x: x["public_score"],
reverse=True if self.eval_higher_is_better else False,
)
missing_candidates = self.max_selected_submissions - len(temp_selected_submissions)
temp_best_public_submissions = temp_best_public_submissions[:missing_candidates]
submission_info["submissions"] = temp_selected_submissions + temp_best_public_submissions
submission_info["submissions"].sort(
key=lambda x: x["private_score"],
reverse=True if self.eval_higher_is_better else False,
)
submission_info["submissions"] = submission_info["submissions"][0]
temp_info = {
"id": submission_info["id"],
"name": submission_info["name"],
"submission_id": submission_info["submissions"]["submission_id"],
"submission_comment": submission_info["submissions"]["submission_comment"],
"status": submission_info["submissions"]["status"],
"selected": submission_info["submissions"]["selected"],
"private_score": submission_info["submissions"]["private_score"],
"submission_date": submission_info["submissions"]["date"],
"submission_time": submission_info["submissions"]["time"],
}
for score in other_scores:
temp_info[score] = submission_info["submissions"][score]
submissions.append(temp_info)
logger.info(f"Processed submissions in {time.time() - start_time} seconds")
return submissions
def fetch(self, private=False):
if private:
submissions = self._process_private_lb()
else:
submissions = self._process_public_lb()
if len(submissions) == 0:
return pd.DataFrame()
df = pd.DataFrame(submissions)
# convert submission date and time to datetime
df["submission_datetime"] = pd.to_datetime(
df["submission_date"] + " " + df["submission_time"], format="%Y-%m-%d %H:%M:%S"
)
# only keep submissions before the end date
df = df[df["submission_datetime"] < self.end_date].reset_index(drop=True)
# sort by submission datetime
# sort by public score and submission datetime
if self.eval_higher_is_better:
if private:
df = df.sort_values(
by=["private_score", "submission_datetime"],
ascending=[False, True],
)
else:
df = df.sort_values(
by=["public_score", "submission_datetime"],
ascending=[False, True],
)
else:
if private:
df = df.sort_values(
by=["private_score", "submission_datetime"],
ascending=[True, True],
)
else:
df = df.sort_values(
by=["public_score", "submission_datetime"],
ascending=[True, True],
)
# only keep 4 significant digits in the score
if private:
df["private_score"] = df["private_score"].apply(lambda x: round(x, 4))
else:
df["public_score"] = df["public_score"].apply(lambda x: round(x, 4))
# reset index
df = df.reset_index(drop=True)
df["rank"] = df.index + 1
# convert datetime column to string
df["submission_datetime"] = df["submission_datetime"].dt.strftime("%Y-%m-%d %H:%M:%S")
logger.info(df)
columns = self.public_columns if not private else self.private_columns
logger.info(columns)
# remove duplicate columns
# ['rank', 'name', 'public_score', 'submission_datetime', 'public_score_track1', 'public_score_track1', 'public_score_track1', 'public_score_track1']
columns = list(dict.fromkeys(columns))
# send submission_datetime to the end
columns.remove("submission_datetime")
columns.append("submission_datetime")
return df[columns]