Abhishek Thakur
improvements to submission page
2ff74ac
raw
history blame
13.1 kB
import io
import json
import time
import uuid
from dataclasses import dataclass
from datetime import datetime
import pandas as pd
from huggingface_hub import HfApi, hf_hub_download
from huggingface_hub.utils._errors import EntryNotFoundError
from loguru import logger
from .errors import AuthenticationError, NoSubmissionError, PastDeadlineError, SubmissionError, SubmissionLimitError
from .utils import http_get, http_post, user_authentication
@dataclass
class Submissions:
competition_id: str
submission_limit: str
end_date: datetime
autotrain_username: str
autotrain_token: str
autotrain_backend_api: str
def __post_init__(self):
self.public_sub_columns = [
"date",
"submission_id",
"public_score",
# "submission_comment",
"selected",
"status",
]
self.private_sub_columns = [
"date",
"submission_id",
"public_score",
"private_score",
# "submission_comment",
"selected",
"status",
]
def _verify_submission(self, bytes_data):
return True
def _add_new_user(self, user_info):
api = HfApi()
user_submission_info = {}
user_submission_info["name"] = user_info["name"]
user_submission_info["id"] = user_info["id"]
user_submission_info["submissions"] = []
# convert user_submission_info to BufferedIOBase file object
user_submission_info_json = json.dumps(user_submission_info)
user_submission_info_json_bytes = user_submission_info_json.encode("utf-8")
user_submission_info_json_buffer = io.BytesIO(user_submission_info_json_bytes)
api.upload_file(
path_or_fileobj=user_submission_info_json_buffer,
path_in_repo=f"submission_info/{user_info['id']}.json",
repo_id=self.competition_id,
repo_type="dataset",
token=self.autotrain_token,
)
def _check_user_submission_limit(self, user_info):
user_id = user_info["id"]
try:
user_fname = hf_hub_download(
repo_id=self.competition_id,
filename=f"submission_info/{user_id}.json",
use_auth_token=self.autotrain_token,
repo_type="dataset",
)
except EntryNotFoundError:
self._add_new_user(user_info)
user_fname = hf_hub_download(
repo_id=self.competition_id,
filename=f"submission_info/{user_id}.json",
use_auth_token=self.autotrain_token,
repo_type="dataset",
)
except Exception as e:
logger.error(e)
raise Exception("Hugging Face Hub is unreachable, please try again later.")
with open(user_fname, "r") as f:
user_submission_info = json.load(f)
todays_date = datetime.now().strftime("%Y-%m-%d")
if len(user_submission_info["submissions"]) == 0:
user_submission_info["submissions"] = []
# count the number of times user has submitted today
todays_submissions = 0
for sub in user_submission_info["submissions"]:
if sub["date"] == todays_date:
todays_submissions += 1
if todays_submissions >= self.submission_limit:
return False
return True
def _increment_submissions(self, user_id, submission_id, submission_comment):
user_fname = hf_hub_download(
repo_id=self.competition_id,
filename=f"submission_info/{user_id}.json",
use_auth_token=self.autotrain_token,
repo_type="dataset",
)
with open(user_fname, "r") as f:
user_submission_info = json.load(f)
todays_date = datetime.now().strftime("%Y-%m-%d")
current_time = datetime.now().strftime("%H:%M:%S")
# here goes all the default stuff for submission
user_submission_info["submissions"].append(
{
"date": todays_date,
"time": current_time,
"submission_id": submission_id,
"submission_comment": submission_comment,
"status": "pending",
"selected": False,
"public_score": -1,
"private_score": -1,
}
)
# count the number of times user has submitted today
todays_submissions = 0
for sub in user_submission_info["submissions"]:
if sub["date"] == todays_date:
todays_submissions += 1
# convert user_submission_info to BufferedIOBase file object
user_submission_info_json = json.dumps(user_submission_info)
user_submission_info_json_bytes = user_submission_info_json.encode("utf-8")
user_submission_info_json_buffer = io.BytesIO(user_submission_info_json_bytes)
api = HfApi()
api.upload_file(
path_or_fileobj=user_submission_info_json_buffer,
path_in_repo=f"submission_info/{user_id}.json",
repo_id=self.competition_id,
repo_type="dataset",
token=self.autotrain_token,
)
return todays_submissions
def _download_user_subs(self, user_id):
user_fname = hf_hub_download(
repo_id=self.competition_id,
filename=f"submission_info/{user_id}.json",
use_auth_token=self.autotrain_token,
repo_type="dataset",
)
with open(user_fname, "r") as f:
user_submission_info = json.load(f)
return user_submission_info["submissions"]
def update_selected_submissions(self, user_token, selected_submission_ids):
current_datetime = datetime.now()
if current_datetime > self.end_date:
raise PastDeadlineError("Competition has ended.")
user_info = self._get_user_info(user_token)
user_id = user_info["id"]
user_fname = hf_hub_download(
repo_id=self.competition_id,
filename=f"submission_info/{user_id}.json",
use_auth_token=self.autotrain_token,
repo_type="dataset",
)
with open(user_fname, "r") as f:
user_submission_info = json.load(f)
for sub in user_submission_info["submissions"]:
if sub["submission_id"] in selected_submission_ids:
sub["selected"] = True
else:
sub["selected"] = False
# convert user_submission_info to BufferedIOBase file object
user_submission_info_json = json.dumps(user_submission_info)
user_submission_info_json_bytes = user_submission_info_json.encode("utf-8")
user_submission_info_json_buffer = io.BytesIO(user_submission_info_json_bytes)
api = HfApi()
api.upload_file(
path_or_fileobj=user_submission_info_json_buffer,
path_in_repo=f"submission_info/{user_id}.json",
repo_id=self.competition_id,
repo_type="dataset",
token=self.autotrain_token,
)
def _get_user_subs(self, user_info, private=False):
# get user submissions
user_id = user_info["id"]
try:
user_submissions = self._download_user_subs(user_id)
except EntryNotFoundError:
raise NoSubmissionError("No submissions found ")
submissions_df = pd.DataFrame(user_submissions)
if not private:
submissions_df = submissions_df.drop(columns=["private_score"])
submissions_df = submissions_df[self.public_sub_columns]
else:
submissions_df = submissions_df[self.private_sub_columns]
return submissions_df
def _get_user_info(self, user_token):
user_info = user_authentication(token=user_token)
if "error" in user_info:
raise AuthenticationError("Invalid token")
if user_info["emailVerified"] is False:
raise AuthenticationError("Please verify your email on Hugging Face Hub")
return user_info
def _create_autotrain_project(self, submission_id, competition_id, user_id, competition_type):
project_config = {}
project_config["dataset_name"] = "lewtun/imdb-dummy"
project_config["dataset_config"] = "lewtun--imdb-dummy"
project_config["dataset_split"] = "train"
project_config["col_mapping"] = {"text": "text", "label": "target"}
payload = {
"username": self.autotrain_username,
"proj_name": submission_id,
"task": 26,
"config": {
"language": "unk",
"max_models": 1,
"competition": {
"submission_id": submission_id,
"competition_id": competition_id,
"user_id": user_id,
"competition_type": "generic",
},
},
}
project_json_resp = http_post(
path="/projects/create",
payload=payload,
token=self.autotrain_token,
domain=self.autotrain_backend_api,
).json()
time.sleep(5)
# Upload data
payload = {
"split": 4,
"col_mapping": project_config["col_mapping"],
"load_config": {"max_size_bytes": 0, "shuffle": False},
"dataset_id": project_config["dataset_name"],
"dataset_config": project_config["dataset_config"],
"dataset_split": project_config["dataset_split"],
}
_ = http_post(
path=f"/projects/{project_json_resp['id']}/data/dataset",
payload=payload,
token=self.autotrain_token,
domain=self.autotrain_backend_api,
).json()
logger.info("๐Ÿ’พ๐Ÿ’พ๐Ÿ’พ Dataset creation done ๐Ÿ’พ๐Ÿ’พ๐Ÿ’พ")
# Process data
_ = http_post(
path=f"/projects/{project_json_resp['id']}/data/start_processing",
token=self.autotrain_token,
domain=self.autotrain_backend_api,
).json()
logger.info("โณ Waiting for data processing to complete ...")
is_data_processing_success = False
while is_data_processing_success is not True:
project_status = http_get(
path=f"/projects/{project_json_resp['id']}",
token=self.autotrain_token,
domain=self.autotrain_backend_api,
).json()
# See database.database.enums.ProjectStatus for definitions of `status`
if project_status["status"] == 3:
is_data_processing_success = True
logger.info("โœ… Data processing complete!")
time.sleep(3)
# Approve training job
_ = http_post(
path=f"/projects/{project_json_resp['id']}/start_training",
token=self.autotrain_token,
domain=self.autotrain_backend_api,
).json()
def my_submissions(self, user_token):
user_info = self._get_user_info(user_token)
current_date_time = datetime.now()
private = False
if current_date_time >= self.end_date:
private = True
subs = self._get_user_subs(user_info, private=private)
return subs
def new_submission(self, user_token, uploaded_file):
# verify token
user_info = self._get_user_info(user_token)
# check if user can submit to the competition
if self._check_user_submission_limit(user_info) is False:
raise SubmissionLimitError("Submission limit reached")
with open(uploaded_file.name, "rb") as f:
bytes_data = f.read()
# verify file is valid
if not self._verify_submission(bytes_data):
raise SubmissionError("Invalid submission file")
else:
user_id = user_info["id"]
submission_id = str(uuid.uuid4())
file_extension = uploaded_file.orig_name.split(".")[-1]
# upload file to hf hub
api = HfApi()
api.upload_file(
path_or_fileobj=bytes_data,
path_in_repo=f"submissions/{user_id}-{submission_id}.{file_extension}",
repo_id=self.competition_id,
repo_type="dataset",
token=self.autotrain_token,
)
# update submission limit
submissions_made = self._increment_submissions(
user_id=user_id,
submission_id=submission_id,
submission_comment="",
)
# schedule submission for evaluation
self._create_autotrain_project(
submission_id=f"{submission_id}",
competition_id=f"{self.competition_id}",
user_id=user_id,
competition_type="generic",
)
remaining_submissions = self.submission_limit - submissions_made
return remaining_submissions