hugsim_web_server_0 / code /scene /ground_model.py
hyzhou404's picture
private scenes
7f3c2df
import torch
import numpy as np
from utils.general_utils import inverse_sigmoid, get_expon_lr_func, build_rotation
from torch import nn
import os
from utils.system_utils import mkdir_p
from plyfile import PlyData, PlyElement
from utils.sh_utils import RGB2SH, SH2RGB
from simple_knn._C import distCUDA2
from utils.graphics_utils import BasicPointCloud
from utils.general_utils import strip_symmetric, build_scaling_rotation
import open3d as o3d
import math
from utils.graphics_utils import BasicPointCloud
from utils.sh_utils import RGB2SH
class GroundModel:
def setup_functions(self):
def build_covariance_from_scaling_rotation(scaling, scaling_modifier, rotation):
L = build_scaling_rotation(scaling_modifier * scaling, rotation)
actual_covariance = L @ L.transpose(1, 2)
symm = strip_symmetric(actual_covariance)
return symm
self.scaling_activation = torch.exp
self.scaling_inverse_activation = torch.log
self.covariance_activation = build_covariance_from_scaling_rotation
self.opacity_activation = torch.sigmoid
self.inverse_opacity_activation = torch.logit
self.rotation_activation = torch.nn.functional.normalize
def __init__(self, sh_degree: int, ground_pcd: BasicPointCloud=None, model_args=None, finetune=False):
assert not ((ground_pcd is None) and (model_args is None)), "Need at least one way of initialization"
self.active_sh_degree = 0
self.max_sh_degree = sh_degree
self.scale = 0.1
if ground_pcd is not None:
self._xyz = nn.Parameter(torch.from_numpy(ground_pcd.points).float().cuda())
fused_color = RGB2SH(torch.tensor(np.asarray(ground_pcd.colors)).float().cuda())
features = torch.zeros((fused_color.shape[0], 3, (self.max_sh_degree + 1) ** 2)).float().cuda()
features[:, :3, 0 ] = fused_color
features[:, 3:, 1:] = 0.0
self._features_dc = nn.Parameter(features[:,:,0:1].transpose(1, 2).contiguous().requires_grad_(True))
self._features_rest = nn.Parameter(features[:,:,1:].transpose(1, 2).contiguous().requires_grad_(True))
self._feats3D = torch.zeros((self._xyz.shape[0], 20)).cuda()
self._feats3D[:, 1] = 1
self._feats3D = nn.Parameter(self._feats3D)
self._rotation = torch.zeros((self._xyz.shape[0], 4)).cuda()
self._rotation[:, 0] = 1
self._opacity = inverse_sigmoid(torch.ones((self._xyz.shape[0], 1)).cuda() * 0.99)
self._scaling = nn.Parameter(torch.ones((self._xyz.shape[0], 2)).float().cuda() * math.log(self.scale))
self.max_radii2D = torch.zeros((self._xyz.shape[0]), device="cuda")
self.percent_dense = 0.01
self.xyz_gradient_accum = torch.zeros((self.get_xyz.shape[0], 1), device="cuda")
self.denom = torch.zeros((self.get_xyz.shape[0], 1), device="cuda")
else:
self.restore(model_args)
if finetune:
self.param_groups = [
{'params': [self._features_dc], 'lr': 2.5e-3, "name": "f_dc"},
{'params': [self._features_rest], 'lr': 2.5e-3 / 20.0, "name": "f_rest"},
{'params': [self._feats3D], 'lr': 1e-3, "name": "feats3D"},
]
else:
self.param_groups = [
{'params': [self._xyz], 'lr': 1.6e-4, "name": "xyz"},
{'params': [self._features_dc], 'lr': 2.5e-3, "name": "f_dc"},
{'params': [self._features_rest], 'lr': 2.5e-3 / 20.0, "name": "f_rest"},
{'params': [self._feats3D], 'lr': 1e-2, "name": "feats3D"},
{'params': [self._opacity], 'lr': 0.05, "name": "opacity"},
{'params': [self._scaling], 'lr': 1e-3, "name": "scaling"},
]
self.optimizer = torch.optim.Adam(self.param_groups, lr=0.0, eps=1e-15)
self.setup_functions()
def capture(self):
return (
self.active_sh_degree,
self._xyz,
# self._y,
# self._z,
self._features_dc,
self._features_rest,
self._feats3D,
self._scaling,
self._rotation,
self._opacity,
)
def restore(self, model_args):
(self.active_sh_degree,
self._xyz,
# self._y,
# self._z,
self._features_dc,
self._features_rest,
self._feats3D,
self._scaling,
self._rotation,
self._opacity) = model_args
@property
def get_scaling(self):
scale_y = torch.ones_like(self._xyz[:, 0]) * math.log(0.001)
scaling = torch.stack((self._scaling[:, 0], scale_y, self._scaling[:, 1]), dim=1).cuda()
# scaling = torch.stack((self._scaling, scale_y, self._scaling), dim=1).cuda()
return self.scaling_activation(scaling)
@property
def get_rotation(self):
return self.rotation_activation(self._rotation)
@property
def get_xyz(self):
return self._xyz
@property
def get_features(self):
features_dc = self._features_dc
features_rest = self._features_rest
return torch.cat((features_dc, features_rest), dim=1)
@property
def get_3D_features(self):
return torch.softmax(self._feats3D, dim=-1)
@property
def get_opacity(self):
return self.opacity_activation(self._opacity)
def get_covariance(self, scaling_modifier = 1):
return self.covariance_activation(self.get_scaling, scaling_modifier, self._rotation)
def oneupSHdegree(self):
if self.active_sh_degree < self.max_sh_degree:
self.active_sh_degree += 1
def construct_list_of_attributes(self):
l = ['x', 'y', 'z', 'nx', 'ny', 'nz']
# All channels except the 3 DC
for i in range(self._features_dc.shape[1]*self._features_dc.shape[2]):
l.append('f_dc_{}'.format(i))
for i in range(self._features_rest.shape[1]*self._features_rest.shape[2]):
l.append('f_rest_{}'.format(i))
for i in range(self._feats3D.shape[1]):
l.append('semantic_{}'.format(i))
l.append('opacity')
for i in range(self._scaling.shape[1]):
l.append('scale_{}'.format(i))
for i in range(self._rotation.shape[1]):
l.append('rot_{}'.format(i))
return l
def save_ply(self, path):
mkdir_p(os.path.dirname(path))
xyz = self.get_xyz.detach().cpu().numpy()
normals = np.zeros_like(xyz)
f_dc = self._features_dc.detach().transpose(1, 2).flatten(start_dim=1).contiguous().cpu().numpy()
f_rest = self._features_rest.detach().transpose(1, 2).flatten(start_dim=1).contiguous().cpu().numpy()
feats3D = self._feats3D.detach().cpu().numpy()
opacities = self._opacity.detach().cpu().numpy()
scale = self._scaling.detach().cpu().numpy()
rotation = self._rotation.detach().cpu().numpy()
dtype_full = [(attribute, 'f4') for attribute in self.construct_list_of_attributes()]
elements = np.empty(xyz.shape[0], dtype=dtype_full)
attributes = np.concatenate((xyz, normals, f_dc, f_rest, feats3D, opacities, scale, rotation), axis=1)
elements[:] = list(map(tuple, attributes))
el = PlyElement.describe(elements, 'vertex')
PlyData([el]).write(path)
def save_vis_ply(self, path):
mkdir_p(os.path.dirname(path))
xyz = self.get_xyz.detach().cpu().numpy()
pcd = o3d.geometry.PointCloud()
pcd.points = o3d.utility.Vector3dVector(xyz)
colors = SH2RGB(self._features_dc[:, 0, :].detach().cpu().numpy()).clip(0, 1)
pcd.colors = o3d.utility.Vector3dVector(colors)
o3d.io.write_point_cloud(path, pcd)
def reset_opacity(self):
opacities_new = inverse_sigmoid(torch.min(self.get_opacity, torch.ones_like(self.get_opacity)*0.01))
optimizable_tensors = self.replace_tensor_to_optimizer(opacities_new, "opacity")
self._opacity = optimizable_tensors["opacity"]
def replace_tensor_to_optimizer(self, tensor, name):
optimizable_tensors = {}
for group in self.optimizer.param_groups:
if group["name"] == name:
stored_state = self.optimizer.state.get(group['params'][0], None)
if stored_state is not None:
stored_state["exp_avg"] = torch.zeros_like(tensor)
stored_state["exp_avg_sq"] = torch.zeros_like(tensor)
del self.optimizer.state[group['params'][0]]
group["params"][0] = nn.Parameter(tensor.requires_grad_(True))
self.optimizer.state[group['params'][0]] = stored_state
optimizable_tensors[group["name"]] = group["params"][0]
else:
group["params"][0] = nn.Parameter(tensor.requires_grad_(True))
optimizable_tensors[group["name"]] = group["params"][0]
return optimizable_tensors
def _prune_optimizer(self, mask):
optimizable_tensors = {}
for group in self.optimizer.param_groups:
if group['name'] == 'appearance_model':
continue
stored_state = self.optimizer.state.get(group['params'][0], None)
if stored_state is not None:
stored_state["exp_avg"] = stored_state["exp_avg"][mask]
stored_state["exp_avg_sq"] = stored_state["exp_avg_sq"][mask]
del self.optimizer.state[group['params'][0]]
group["params"][0] = nn.Parameter((group["params"][0][mask].requires_grad_(True)))
self.optimizer.state[group['params'][0]] = stored_state
optimizable_tensors[group["name"]] = group["params"][0]
else:
group["params"][0] = nn.Parameter(group["params"][0][mask].requires_grad_(True))
optimizable_tensors[group["name"]] = group["params"][0]
return optimizable_tensors
def prune_points(self, mask):
valid_points_mask = ~mask
optimizable_tensors = self._prune_optimizer(valid_points_mask)
self._xyz = optimizable_tensors["xyz"]
self._features_dc = optimizable_tensors["f_dc"]
self._features_rest = optimizable_tensors["f_rest"]
self._feats3D = optimizable_tensors["feats3D"]
self._opacity = optimizable_tensors["opacity"]
self._scaling = optimizable_tensors["scaling"]
self._rotation = self._rotation[0, :].repeat((self._xyz.shape[0], 1))
self.xyz_gradient_accum = self.xyz_gradient_accum[valid_points_mask]
self.denom = self.denom[valid_points_mask]
self.max_radii2D = self.max_radii2D[valid_points_mask]
def cat_tensors_to_optimizer(self, tensors_dict):
optimizable_tensors = {}
for group in self.optimizer.param_groups:
if group['name'] not in tensors_dict:
continue
assert len(group["params"]) == 1
extension_tensor = tensors_dict[group["name"]]
stored_state = self.optimizer.state.get(group["params"][0], None)
if stored_state is not None:
stored_state["exp_avg"] = torch.cat((stored_state["exp_avg"], torch.zeros_like(extension_tensor)), dim=0)
stored_state["exp_avg_sq"] = torch.cat((stored_state["exp_avg_sq"], torch.zeros_like(extension_tensor)), dim=0)
del self.optimizer.state[group["params"][0]]
group["params"][0] = nn.Parameter(torch.cat((group["params"][0], extension_tensor), dim=0).requires_grad_(True))
self.optimizer.state[group["params"][0]] = stored_state
optimizable_tensors[group["name"]] = group["params"][0]
else:
group["params"][0] = nn.Parameter(torch.cat((group["params"][0], extension_tensor), dim=0).requires_grad_(True))
optimizable_tensors[group["name"]] = group["params"][0]
return optimizable_tensors
def densification_postfix(self, new_xyz, new_features_dc, new_features_rest, new_feats3D, new_opacities, new_scaling, new_rotation):
d = {"xyz": new_xyz,
"f_dc": new_features_dc,
"f_rest": new_features_rest,
"feats3D": new_feats3D,
"opacity": new_opacities,
"scaling" : new_scaling}
optimizable_tensors = self.cat_tensors_to_optimizer(d)
self._xyz = optimizable_tensors["xyz"]
self._features_dc = optimizable_tensors["f_dc"]
self._feats3D = optimizable_tensors["feats3D"]
self._features_rest = optimizable_tensors["f_rest"]
self._opacity = optimizable_tensors["opacity"]
self._scaling = optimizable_tensors["scaling"]
self._rotation = self._rotation[0, :].repeat((self._xyz.shape[0], 1))
self.xyz_gradient_accum = torch.zeros((self.get_xyz.shape[0], 1), device="cuda")
self.denom = torch.zeros((self.get_xyz.shape[0], 1), device="cuda")
self.max_radii2D = torch.zeros((self.get_xyz.shape[0]), device="cuda")
def densify_and_split(self, grads, grad_threshold, scene_extent, N=2):
n_init_points = self.get_xyz.shape[0]
# Extract points that satisfy the gradient condition
padded_grad = torch.zeros((n_init_points), device="cuda")
padded_grad[:grads.shape[0]] = grads.squeeze()
selected_pts_mask = torch.where(padded_grad >= grad_threshold, True, False)
selected_pts_mask = torch.logical_and(selected_pts_mask,
torch.max(self.get_scaling, dim=1).values > self.percent_dense*scene_extent)
stds = self.get_scaling[selected_pts_mask].repeat(N,1)
means =torch.zeros((stds.size(0), 3),device="cuda")
samples = torch.normal(mean=means, std=stds)
rots = build_rotation(self._rotation[selected_pts_mask]).repeat(N,1,1)
new_xyz = torch.bmm(rots, samples.unsqueeze(-1)).squeeze(-1) + self.get_xyz[selected_pts_mask].repeat(N, 1)
new_scaling = self.scaling_inverse_activation(self.get_scaling[selected_pts_mask].repeat(N,1) / (0.8*N))[:, [0,2]]
new_rotation = self._rotation[selected_pts_mask].repeat(N,1)
new_features_dc = self._features_dc[selected_pts_mask].repeat(N,1,1)
new_features_rest = self._features_rest[selected_pts_mask].repeat(N,1,1)
new_feats3D = self._feats3D[selected_pts_mask].repeat(N,1)
new_opacity = self._opacity[selected_pts_mask].repeat(N,1)
self.densification_postfix(new_xyz, new_features_dc, new_features_rest, new_feats3D, new_opacity, new_scaling, new_rotation)
prune_filter = torch.cat((selected_pts_mask, torch.zeros(N * selected_pts_mask.sum(), device="cuda", dtype=bool)))
self.prune_points(prune_filter)
def densify_and_clone(self, grads, grad_threshold, scene_extent):
# Extract points that satisfy the gradient condition
selected_pts_mask = torch.where(torch.norm(grads, dim=-1) >= grad_threshold, True, False)
selected_pts_mask = torch.logical_and(selected_pts_mask,
torch.max(self.get_scaling, dim=1).values <= self.percent_dense*scene_extent)
new_xyz = self._xyz[selected_pts_mask]
new_features_dc = self._features_dc[selected_pts_mask]
new_features_rest = self._features_rest[selected_pts_mask]
new_feats3D = self._feats3D[selected_pts_mask]
new_opacities = self._opacity[selected_pts_mask]
new_scaling = self._scaling[selected_pts_mask]
new_rotation = self._rotation[selected_pts_mask]
self.densification_postfix(new_xyz, new_features_dc, new_features_rest, new_feats3D, new_opacities, new_scaling, new_rotation)
def densify_and_prune(self, max_grad, min_opacity, extent, max_screen_size):
grads = self.xyz_gradient_accum / self.denom
grads[grads.isnan()] = 0.0
self.densify_and_clone(grads, max_grad, extent)
self.densify_and_split(grads, max_grad, extent)
prune_mask = (self.get_opacity < min_opacity).squeeze()
if max_screen_size:
big_points_vs = self.max_radii2D > max_screen_size
big_points_ws = self.get_scaling.max(dim=1).values > 1.0
prune_mask = torch.logical_or(torch.logical_or(prune_mask, big_points_vs), big_points_ws)
self.prune_points(prune_mask)
torch.cuda.empty_cache()
def add_densification_stats(self, viewspace_point_tensor, update_filter):
self.xyz_gradient_accum[update_filter] += torch.norm(viewspace_point_tensor.grad[update_filter,:2], dim=-1, keepdim=True)
self.denom[update_filter] += 1
def add_densification_stats_grad(self, tensor_grad, update_filter):
self.xyz_gradient_accum[update_filter] += torch.norm(tensor_grad[update_filter,:2], dim=-1, keepdim=True)
self.denom[update_filter] += 1