hugsim_web_server_0 / code /utils /dynamic_utils.py
hyzhou404's picture
private scenes
7f3c2df
import numpy as np
import torch
from torch import optim
from torch import nn
from tqdm import tqdm
from matplotlib import pyplot as plt
import torch.nn.functional as F
from collections import defaultdict
import os
import roma
class unicycle(torch.nn.Module):
def __init__(self, train_timestamp, centers, eulers, heights=None):
super(unicycle, self).__init__()
self.train_timestamp = train_timestamp
self.delta = torch.diff(self.train_timestamp)
self.input_a = centers[:, 0].clone()
self.input_b = centers[:, 1].clone()
self.a = nn.Parameter(centers[:, 0])
self.b = nn.Parameter(centers[:, 1])
diff_a = torch.diff(centers[:, 0]) / self.delta
diff_b = torch.diff(centers[:, 1]) / self.delta
v = torch.sqrt(diff_a ** 2 + diff_b**2)
self.v = nn.Parameter(F.pad(v, (0, 1), 'constant', v[-1].item()))
self.pitchroll = eulers[:, :2]
self.yaw = nn.Parameter(eulers[:, -1])
if heights is None:
self.h = torch.zeros_like(train_timestamp).float()
else:
self.h = heights
def acc_omega(self):
acc = torch.diff(self.v) / self.delta
omega = torch.diff(self.yaw) / self.delta
acc = F.pad(acc, (0, 1), 'constant', acc[-1].item())
omega = F.pad(omega, (0, 1), 'constant', omega[-1].item())
return acc, omega
def forward(self, timestamp):
if timestamp < self.train_timestamp[0]:
delta_t = self.train_timestamp[0] - timestamp
a = self.a[0] - delta_t * torch.cos(self.yaw[0]) * self.v[0]
b = self.b[0] - delta_t * torch.sin(self.yaw[0]) * self.v[0]
return a, b, self.v[0], self.pitchroll[0], self.yaw[0], self.h[0]
elif timestamp > self.train_timestamp[-1]:
delta_t = timestamp - self.train_timestamp[-1]
a = self.a[-1] + delta_t * torch.cos(self.yaw[-1]) * self.v[-1]
b = self.b[-1] + delta_t * torch.sin(self.yaw[-1]) * self.v[-1]
return a, b, self.v[-1], self.pitchroll[-1], self.yaw[-1], self.h[-1]
idx = torch.searchsorted(self.train_timestamp, timestamp, side='left')
if self.train_timestamp[idx] == timestamp:
return self.a[idx], self.b[idx], self.v[idx], self.pitchroll[idx], self.yaw[idx], self.h[idx]
else:
prev_timestamps = self.train_timestamp[idx-1]
delta_t = timestamp - prev_timestamps
prev_a, prev_b = self.a[idx-1], self.b[idx-1]
prev_v, prev_yaw = self.v[idx-1], self.yaw[idx-1]
acc, omega = self.acc_omega()
v = prev_v + acc[idx-1] * delta_t
yaw = prev_yaw + omega[idx-1] * delta_t
a = prev_a + prev_v * ((torch.sin(yaw) - torch.sin(prev_yaw)) / (omega[idx-1] + 1e-6))
b = prev_b - prev_v * ((torch.cos(yaw) - torch.cos(prev_yaw)) / (omega[idx-1] + 1e-6))
h = self.h[idx-1]
return a, b, v, self.pitchroll[idx-1], yaw, h
def capture(self):
return (
self.a,
self.b,
self.v,
self.pitchroll,
self.yaw,
self.h,
self.train_timestamp,
self.delta
)
@classmethod
def restore(cls, model_args):
(
a,
b,
v,
pitchroll,
yaw,
h,
train_timestamp,
delta
) = model_args
model = cls(train_timestamp,
torch.stack([a.clone().detach(),b.clone().detach()], dim=-1),
torch.concat([pitchroll.clone().detach(), yaw.clone().detach()[:, None]], dim=-1),
h.clone().detach())
model.a = a
model.b = b
model.v = v
model.pitchroll = pitchroll
model.yaw = yaw
model.h = h
model.train_timestamp = train_timestamp
model.delta = delta
return model
def visualize(self, save_path, noise_centers=None, gt_centers=None):
a = self.a.detach().cpu().numpy()
b = self.b.detach().cpu().numpy()
yaw = self.yaw.detach().cpu().numpy()
plt.scatter(a, b, marker='x', color='b')
plt.quiver(a, b, np.ones_like(a) * np.cos(yaw), np.ones_like(b) * np.sin(yaw), scale=20, width=0.005)
if noise_centers is not None:
noise_centers = noise_centers.detach().cpu().numpy()
plt.scatter(noise_centers[:, 0], noise_centers[:, 1], marker='o', color='gray')
if gt_centers is not None:
gt_centers = gt_centers.detach().cpu().numpy()
plt.scatter(gt_centers[:, 0], gt_centers[:, 1], marker='v', color='g')
plt.axis('equal')
plt.savefig(save_path)
plt.close()
def reg_loss(self):
reg = 0
acc, omega = self.acc_omega()
reg += torch.mean(torch.abs(torch.diff(acc))) * 0.01
reg += torch.mean(torch.abs(torch.diff(omega))) * 0.1
reg_a_motion = self.v[:-1] * ((torch.sin(self.yaw[1:]) - torch.sin(self.yaw[:-1])) / (omega[:-1] + 1e-6))
reg_b_motion = -self.v[:-1] * ((torch.cos(self.yaw[1:]) - torch.cos(self.yaw[:-1])) / (omega[:-1] + 1e-6))
reg_a = self.a[:-1] + reg_a_motion
reg_b = self.b[:-1] + reg_b_motion
reg += torch.mean((reg_a - self.a[1:])**2 + (reg_b - self.b[1:])**2) * 1
return reg
def pos_loss(self):
return torch.mean((self.a - self.input_a) ** 2 + (self.b - self.input_b) ** 2) * 10
def create_unicycle_model(train_cams, model_path, opt_iter=0, opt_pos=False, data_type='kitti'):
unicycle_models = {}
if data_type == 'kitti':
cameras = [cam for cam in train_cams if 'cam_0' in cam.image_name]
elif data_type == 'waymo':
cameras = [cam for cam in train_cams if 'cam_1' in cam.image_name]
elif data_type == 'nuscenes':
cameras = [cam for cam in train_cams if (('CAM_FRONT' in cam.image_name) and ('LEFT' not in cam.image_name) and ('RIGHT' not in cam.image_name))]
elif data_type == 'pandaset':
cameras = [cam for cam in train_cams if 'front_camera' in cam.image_name]
else:
raise NotImplementedError
cameras = sorted(cameras, key=lambda x: x.timestamp)
os.makedirs(os.path.join(model_path, "unicycle"), exist_ok=True)
start_time = cameras[0].timestamp
all_centers, all_heights, all_eulers, all_timestamps = defaultdict(list), defaultdict(list), defaultdict(list), defaultdict(list)
for cam in cameras:
t = cam.timestamp - start_time
for track_id, b2w in cam.dynamics.items():
all_centers[track_id].append(b2w[[0, 2], 3])
all_heights[track_id].append(b2w[1, 3])
eulers = roma.rotmat_to_euler('xzy', b2w[:3, :3])
all_eulers[track_id].append(-eulers + torch.pi / 2)
# all_eulers[track_id].append(eulers)
all_timestamps[track_id].append(t)
for track_id in all_centers.keys():
centers = torch.stack(all_centers[track_id], dim=0).cuda()
timestamps = torch.tensor(all_timestamps[track_id]).cuda()
heights = torch.tensor(all_heights[track_id]).cuda()
eulers = torch.stack(all_eulers[track_id]).cuda()
model = unicycle(timestamps, centers.clone(), eulers.clone(), heights.clone())
model.visualize(os.path.join(model_path, "unicycle", f"{track_id}_init.png"))
l = [
{'params': [model.v], 'lr': 1e-3, "name": "v"},
{'params': [model.yaw], 'lr': 1e-4, "name": "yaw"},
]
if opt_pos:
l.extend([
{'params': [model.a], 'lr': 1e-3, "name": "a"},
{'params': [model.b], 'lr': 1e-3, "name": "b"},
])
optimizer = optim.Adam(l, lr=0.0)
t_range = tqdm(range(opt_iter), desc=f"Fitting {track_id}")
for iter in t_range:
loss = 5e-3 * model.reg_loss() + 1e-3 * model.pos_loss()
t_range.set_postfix({'loss': loss.item()})
optimizer.zero_grad()
loss.backward()
optimizer.step()
unicycle_models[track_id] = {'model': model,
'optimizer': optimizer,
'input_centers': centers}
model.visualize(os.path.join(model_path, "unicycle", f"{track_id}_iter0.png"))
torch.save(model.capture(), os.path.join(model_path, f"ckpts/unicycle_{track_id}.pth"))
return unicycle_models
if __name__ == "__main__":
from scene import Scene, GaussianModel
from omegaconf import OmegaConf
from argparse import ArgumentParser
parser = ArgumentParser(description="Training script parameters")
parser.add_argument("--base_cfg", type=str, default="./configs/gs_base.yaml")
parser.add_argument("--data_cfg", type=str, default="./configs/nusc.yaml")
parser.add_argument("--source_path", type=str, default="")
parser.add_argument("--model_path", type=str, default="")
args = parser.parse_args()
cfg = OmegaConf.merge(OmegaConf.load(args.base_cfg), OmegaConf.load(args.data_cfg))
if len(args.source_path) > 0:
cfg.source_path = args.source_path
if len(args.model_path) > 0:
cfg.model_path = args.model_path
gaussians = GaussianModel(3, feat_mutable=True)
print("loading scene...")
scene = Scene(cfg, gaussians, data_type=cfg.data_type)
create_unicycle_model(scene.getTrainCameras(), cfg.model_path, 500, False, cfg.data_type)