Spaces:
Paused
Paused
# 3D IoU caculate code for 3D object detection | |
# Kent 2018/12 | |
import numpy as np | |
from scipy.spatial import ConvexHull | |
from numpy import * | |
def polygon_clip(subjectPolygon, clipPolygon): | |
""" Clip a polygon with another polygon. | |
Ref: https://rosettacode.org/wiki/Sutherland-Hodgman_polygon_clipping#Python | |
Args: | |
subjectPolygon: a list of (x,y) 2d points, any polygon. | |
clipPolygon: a list of (x,y) 2d points, has to be *convex* | |
Note: | |
**points have to be counter-clockwise ordered** | |
Return: | |
a list of (x,y) vertex point for the intersection polygon. | |
""" | |
def inside(p): | |
return(cp2[0]-cp1[0])*(p[1]-cp1[1]) > (cp2[1]-cp1[1])*(p[0]-cp1[0]) | |
def computeIntersection(): | |
dc = [ cp1[0] - cp2[0], cp1[1] - cp2[1] ] | |
dp = [ s[0] - e[0], s[1] - e[1] ] | |
n1 = cp1[0] * cp2[1] - cp1[1] * cp2[0] | |
n2 = s[0] * e[1] - s[1] * e[0] | |
n3 = 1.0 / (dc[0] * dp[1] - dc[1] * dp[0]) | |
return [(n1*dp[0] - n2*dc[0]) * n3, (n1*dp[1] - n2*dc[1]) * n3] | |
outputList = subjectPolygon | |
cp1 = clipPolygon[-1] | |
for clipVertex in clipPolygon: | |
cp2 = clipVertex | |
inputList = outputList | |
outputList = [] | |
s = inputList[-1] | |
for subjectVertex in inputList: | |
e = subjectVertex | |
if inside(e): | |
if not inside(s): | |
outputList.append(computeIntersection()) | |
outputList.append(e) | |
elif inside(s): | |
outputList.append(computeIntersection()) | |
s = e | |
cp1 = cp2 | |
if len(outputList) == 0: | |
return None | |
return(outputList) | |
def poly_area(x,y): | |
""" Ref: http://stackoverflow.com/questions/24467972/calculate-area-of-polygon-given-x-y-coordinates """ | |
return 0.5*np.abs(np.dot(x,np.roll(y,1))-np.dot(y,np.roll(x,1))) | |
def convex_hull_intersection(p1, p2): | |
""" Compute area of two convex hull's intersection area. | |
p1,p2 are a list of (x,y) tuples of hull vertices. | |
return a list of (x,y) for the intersection and its volume | |
""" | |
inter_p = polygon_clip(p1,p2) | |
if inter_p is not None: | |
hull_inter = ConvexHull(inter_p) | |
return inter_p, hull_inter.volume | |
else: | |
return None, 0.0 | |
def box3d_vol(corners): | |
''' corners: (8,3) no assumption on axis direction ''' | |
a = np.sqrt(np.sum((corners[0,:] - corners[1,:])**2)) | |
b = np.sqrt(np.sum((corners[1,:] - corners[2,:])**2)) | |
c = np.sqrt(np.sum((corners[0,:] - corners[4,:])**2)) | |
return a*b*c | |
def is_clockwise(p): | |
x = p[:,0] | |
y = p[:,1] | |
return np.dot(x,np.roll(y,1))-np.dot(y,np.roll(x,1)) > 0 | |
def box3d_iou(corners1, corners2): | |
''' Compute 3D bounding box IoU. | |
Input: | |
corners1: numpy array (8,3), assume up direction is negative Y | |
corners2: numpy array (8,3), assume up direction is negative Y | |
Output: | |
iou: 3D bounding box IoU | |
iou_2d: bird's eye view 2D bounding box IoU | |
todo (kent): add more description on corner points' orders. | |
''' | |
# corner points are in counter clockwise order | |
rect1 = [(corners1[i,0], corners1[i,2]) for i in [4,5,1,0]] | |
rect2 = [(corners2[i,0], corners2[i,2]) for i in [4,5,1,0]] | |
area1 = poly_area(np.array(rect1)[:,0], np.array(rect1)[:,1]) | |
area2 = poly_area(np.array(rect2)[:,0], np.array(rect2)[:,1]) | |
inter, inter_area = convex_hull_intersection(rect1, rect2) | |
iou_2d = inter_area/(area1+area2-inter_area) | |
# if iou_2d < 0: | |
# print(inter_area, area1, area2) | |
# ymax = min(corners1[0,1], corners2[0,1]) | |
# ymin = max(corners1[4,1], corners2[4,1]) | |
# inter_vol = inter_area * max(0.0, ymax-ymin) | |
# vol1 = box3d_vol(corners1) | |
# vol2 = box3d_vol(corners2) | |
# iou = inter_vol / (vol1 + vol2 - inter_vol) | |
# return iou, iou_2d | |
return 0, iou_2d | |
# ---------------------------------- | |
# Helper functions for evaluation | |
# ---------------------------------- | |
def get_3d_box(box_size, heading_angle, center): | |
''' Calculate 3D bounding box corners from its parameterization. | |
Input: | |
box_size: tuple of (length,wide,height) | |
heading_angle: rad scalar, clockwise from pos x axis | |
center: tuple of (x,y,z) | |
Output: | |
corners_3d: numpy array of shape (8,3) for 3D box cornders | |
''' | |
def roty(t): | |
c = np.cos(t) | |
s = np.sin(t) | |
return np.array([[c, 0, s], | |
[0, 1, 0], | |
[-s, 0, c]]) | |
R = roty(heading_angle) | |
l,w,h = box_size | |
x_corners = [l/2,l/2,-l/2,-l/2,l/2,l/2,-l/2,-l/2]; | |
y_corners = [h/2,h/2,h/2,h/2,-h/2,-h/2,-h/2,-h/2]; | |
z_corners = [w/2,-w/2,-w/2,w/2,w/2,-w/2,-w/2,w/2]; | |
corners_3d = np.dot(R, np.vstack([x_corners,y_corners,z_corners])) | |
corners_3d[0,:] = corners_3d[0,:] + center[0]; | |
corners_3d[1,:] = corners_3d[1,:] + center[1]; | |
corners_3d[2,:] = corners_3d[2,:] + center[2]; | |
corners_3d = np.transpose(corners_3d) | |
return corners_3d | |
if __name__=='__main__': | |
print('------------------') | |
# get_3d_box(box_size, heading_angle, center) | |
corners_3d_ground = get_3d_box((1.497255,1.644981, 3.628938), -1.531692, (2.882992 ,1.698800 ,20.785644)) | |
corners_3d_predict = get_3d_box((1.458242, 1.604773, 3.707947), -1.549553, (2.756923, 1.661275, 20.943280 )) | |
(IOU_3d,IOU_2d)=box3d_iou(corners_3d_predict,corners_3d_ground) | |
print (IOU_3d,IOU_2d) #3d IoU/ 2d IoU of BEV(bird eye's view) | |