File size: 42,888 Bytes
fb59c30 242f797 fb59c30 5feba57 fb59c30 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 |
import gradio as gr
from gradio_leaderboard import Leaderboard, SelectColumns, SearchColumns
import config
from pathlib import Path
import pandas as pd
import json
import warnings
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union, Literal
import pandas as pd
from pandas.io.formats.style import Styler
import semantic_version
from dataclasses import dataclass, field
from gradio.components import Component
from gradio.data_classes import GradioModel
from gradio.events import Events
@dataclass
class SelectColumns:
default_selection: Optional[list[str]] = field(default_factory=list)
cant_deselect: Optional[list[str]] = field(default_factory=list)
allow: bool = True
label: Optional[str] = None
show_label: bool = True
info: Optional[str] = None
@dataclass
class ColumnFilter:
column: str
type: Literal["slider", "dropdown", "checkboxgroup", "boolean"] = None
default: Optional[Union[int, float, List[Tuple[str, str]]]] = None
choices: Optional[Union[int, float, List[Tuple[str, str]]]] = None
label: Optional[str] = None
info: Optional[str] = None
show_label: bool = True
min: Optional[Union[int, float]] = None
max: Optional[Union[int, float]] = None
class DataframeData(GradioModel):
headers: List[str]
data: Union[List[List[Any]], List[Tuple[Any, ...]]]
metadata: Optional[Dict[str, Optional[List[Any]]]] = None
abs_path = Path(__file__).parent
# Load the leaderboard data for
zero_shot_df = pd.read_json("leaderboards/Zero-Shot_leaderboard_data.json", precise_float=True)
five_shot_df = pd.read_json("leaderboards/Few-Shot_leaderboard_data.json", precise_float=True)
cot_df = pd.read_json("leaderboards/CoT_leaderboard_data.json", precise_float=True)
# Original Average Performances
original_zero_shot_avg_perf = zero_shot_df["Average Performance"]
original_five_shot_avg_perf = five_shot_df["Average Performance"]
original_cot_avg_perf = cot_df["Average Performance"]
# Load the task information json data
with open("task_information.json", 'r') as file:
task_information_json = json.load(file)
cot_currently_selected_filters = {
"Language": [],
"Task Type": [],
"Clinical Context": [],
"Data Access": [],
"Applications": [],
"Clinical Stage": []
}
five_shot_currently_selected_filters = {
"Language": [],
"Task Type": [],
"Clinical Context": [],
"Data Access": [],
"Applications": [],
"Clinical Stage": []
}
zero_shot_currently_selected_filters = {
"Language": [],
"Task Type": [],
"Clinical Context": [],
"Data Access": [],
"Applications": [],
"Clinical Stage": []
}
# with open("/Users/kevinxie/Desktop/Clinical NLP/Clinical-Text-Leaderboard/leaderboard_data.json", 'r') as file:
with open("leaderboards/Few-Shot_leaderboard_data.json", 'r') as file:
five_shot_leaderboard_json = json.load(file)
with open("leaderboards/CoT_leaderboard_data.json", 'r') as file:
CoT_leaderboard_json = json.load(file)
with open("leaderboards/Zero-Shot_leaderboard_data.json", 'r') as file:
zero_shot_leaderboard_json = json.load(file)
valid_tasks = {'NUBES', 'NorSynthClinical-NER', 'MEDIQA 2023-sum-A', 'Medication extraction',
'IMCS-V2-DAC', 'Cantemist-Coding', 'IFMIR-NER', 'EHRQA-QA', 'Ex4CDS', 'MedDG',
'MTS-Temporal', 'CHIP-MDCFNPC', 'n2c2 2014-Diabetes', 'MIMIC-III Outcome.LoS',
'n2c2 2014-Hypertension', 'RuCCoN', 'CARES-ICD10 Chapter', 'RuDReC-NER', 'MIMIC-IV DiReCT.Dis',
'n2c2 2014-Medication', 'iCorpus', 'Brateca-Hospitalization', 'n2c2 2010-Assertion',
'NorSynthClinical-PHI', 'IFMIR - NER&factuality', 'JP-STS', 'NorSynthClinical-RE',
'n2c2 2010-Concept', 'BARR2', 'IMCS-V2-NER', 'IMCS-V2-MRG', 'cMedQA', 'MedSTS',
'BRONCO150-NER&Status', 'n2c2 2018-ADE&medication', 'CLISTER', 'ClinicalNotes-UPMC',
'PPTS', 'CLIP', 'IMCS-V2-SR', 'EHRQA-Sub department', 'BrainMRI-AIS', 'Brateca-Mortality',
'meddocan', 'CHIP-CDEE', 'CAS-evidence', 'MEDIQA 2019-RQE', 'Cantemis-Norm', 'MEDIQA 2023-sum-B',
'CHIP-CTC', 'C-EMRS', 'CARES ICD10 Block', 'Cantemis-NER', 'CLINpt-NER', 'MEDIQA 2023-chat-A',
'n2c2 2014-De-identification', 'n2c2 2014-Hyperlipidemia', 'EHRQA-Primary department',
'ADE-Drug dosage', 'IFMIR-Incident type', 'MIMIC-III Outcome.Mortality', 'n2c2 2006-De-identification',
'CAS-label', 'MIMIC-IV CDM', 'CodiEsp-ICD-10-CM', 'n2c2 2010-Relation', 'CARES-ICD10 Subblock',
'MIE', 'HealthCareMagic-100k', 'ADE-Identification', 'MIMIC-IV DiReCT.PDD', 'ADE-Extraction',
'DialMed', 'GOUT-CC-Consensus', 'GraSSCo PHI', 'RuMedNLI', 'RuMedDaNet', 'CBLUE-CDN', 'icliniq-10k',
'CARDIO-DE', 'CARES-Area', 'DiSMed-NER', 'CodiEsp-ICD-10-PCS', 'MedNLI', 'MTS', 'MIMIC-IV BHC',
'n2c2 2014-CAD'}
n_models = int(list(zero_shot_leaderboard_json["Model"].keys())[-1]) + 1
def get_filtered_columns(filter_selections):
"""
Given an array of selected filters, this function will return a list of all
the columns that match the criteria.
Input:
filter_selections: dictionary of all task type filter selections
Output:
Returns a list of all valid tasks to display (by task name)
"""
# Need to add a flag to this filter so that it only displays those that match all attributes
valid_columns = []
for task in task_information_json:
task_info = task_information_json[task]
# Flag to keep track of whether this task is valid
isValid = True
# Iterate through each attribute of the task
for attribute in task_info:
# If the filter is empty
if not filter_selections[attribute]:
continue
value = task_info[attribute]
# print(filter_selections[attribute])
# Handle edge case for multiple categories
if "," in value:
all_categories = value.split(", ")
flag = False
for category in all_categories:
if category in filter_selections[attribute]:
flag = True
break
if flag: # one category matches
isValid = True
else: # none of the categories matched
isValid = False
# Handle Brazilian Edge Case
elif (value == 'Portuguese\n(Brazilian)') and ('Portuguese' in filter_selections[attribute]):
isValid = True
break
elif value not in filter_selections[attribute]:
# if filter_selections[attribute] not in task_info[attribute]:
isValid = False
# break
if task in valid_tasks and isValid:
valid_columns.append(task)
return valid_columns
def isEmpty(currently_selected_filters):
"""
Checks if there are no selected filters
"""
flag = True
for key, value in currently_selected_filters.items():
if not value:
continue
else:
return False
return True
####################################################################################################
####### CoT Filters
####################################################################################################
def cot_filter_language(language_choice):
# Update the Global store for the currently selected filters
cot_currently_selected_filters["Language"] = language_choice
if isEmpty(cot_currently_selected_filters):
cot_df["Average Performance"] = original_cot_avg_perf
return cot_df
filtered_cols = get_filtered_columns(cot_currently_selected_filters)
updated_performance = cot_update_average_performance(filtered_cols)
# Convert dictionary keys to integers to match the DataFrame index
updated_performance_int = {int(k): v for k, v in updated_performance.items()}
# Map the values to the 'Average Performance' column based on index
cot_df["Average Performance"] = cot_df.index.map(updated_performance_int)
return cot_df[['T', 'Model', 'Model: Domain', 'Model: Accessibility', 'Size (B)', 'Average Performance'] + filtered_cols]
def cot_filter_task_type(task_type_choice):
# Update the Global store for the currently selected filters
cot_currently_selected_filters["Task Type"] = task_type_choice
if isEmpty(cot_currently_selected_filters):
cot_df["Average Performance"] = original_cot_avg_perf
return cot_df
filtered_cols = get_filtered_columns(cot_currently_selected_filters)
updated_performance = cot_update_average_performance(filtered_cols)
# Convert dictionary keys to integers to match the DataFrame index
updated_performance_int = {int(k): v for k, v in updated_performance.items()}
# Map the values to the 'Average Performance' column based on index
cot_df["Average Performance"] = cot_df.index.map(updated_performance_int)
return cot_df[['T', 'Model', 'Model: Domain', 'Model: Accessibility', 'Model: Size Range', 'Size (B)', 'Average Performance'] + filtered_cols]
def cot_filter_clinical_context(clinical_context_choice):
# Update the Global store for the currently selected filters
cot_currently_selected_filters["Clinical Context"] = clinical_context_choice
if isEmpty(cot_currently_selected_filters):
cot_df["Average Performance"] = original_cot_avg_perf
return cot_df
filtered_cols = get_filtered_columns(cot_currently_selected_filters)
updated_performance = cot_update_average_performance(filtered_cols)
# Convert dictionary keys to integers to match the DataFrame index
updated_performance_int = {int(k): v for k, v in updated_performance.items()}
# Map the values to the 'Average Performance' column based on index
cot_df["Average Performance"] = cot_df.index.map(updated_performance_int)
return cot_df[['T', 'Model', 'Model: Domain', 'Model: Accessibility', 'Model: Size Range', 'Size (B)', 'Average Performance'] + filtered_cols]
def cot_filter_applications(applications_choice):
# Update the Global store for the currently selected filters
cot_currently_selected_filters["Applications"] = applications_choice
if isEmpty(cot_currently_selected_filters):
cot_df["Average Performance"] = original_cot_avg_perf
return cot_df
filtered_cols = get_filtered_columns(cot_currently_selected_filters)
updated_performance = cot_update_average_performance(filtered_cols)
# Convert dictionary keys to integers to match the DataFrame index
updated_performance_int = {int(k): v for k, v in updated_performance.items()}
# Map the values to the 'Average Performance' column based on index
cot_df["Average Performance"] = cot_df.index.map(updated_performance_int)
return cot_df[['T', 'Model', 'Model: Domain', 'Model: Accessibility', 'Model: Size Range', 'Size (B)', 'Average Performance'] + filtered_cols]
def cot_filter_stage_options(stage_choice):
# Update the Global store for the currently selected filters
cot_currently_selected_filters["Clinical Stage"] = stage_choice
if isEmpty(cot_currently_selected_filters):
cot_df["Average Performance"] = original_cot_avg_perf
return cot_df
filtered_cols = get_filtered_columns(cot_currently_selected_filters)
updated_performance = cot_update_average_performance(filtered_cols)
# Convert dictionary keys to integers to match the DataFrame index
updated_performance_int = {int(k): v for k, v in updated_performance.items()}
# Map the values to the 'Average Performance' column based on index
cot_df["Average Performance"] = cot_df.index.map(updated_performance_int)
return cot_df[['T', 'Model', 'Model: Domain', 'Model: Accessibility', 'Model: Size Range', 'Size (B)', 'Average Performance'] + filtered_cols]
def cot_filter_data_access(data_access_choice):
# Update the Global store for the currently selected filters
cot_currently_selected_filters["Data Access"] = data_access_choice
if isEmpty(cot_currently_selected_filters):
cot_df["Average Performance"] = original_cot_avg_perf
return cot_df
filtered_cols = get_filtered_columns(cot_currently_selected_filters)
updated_performance = cot_update_average_performance(filtered_cols)
# Convert dictionary keys to integers to match the DataFrame index
updated_performance_int = {int(k): v for k, v in updated_performance.items()}
# Map the values to the 'Average Performance' column based on index
cot_df["Average Performance"] = cot_df.index.map(updated_performance_int)
return cot_df[['T', 'Model', 'Model: Domain', 'Model: Accessibility', 'Model: Size Range', 'Size (B)', 'Average Performance'] + filtered_cols]
def cot_update_average_performance(selected_columns):
"""
When a user clicks filters to filter certain tasks, the average performance
of the model should update. This function takes uses the updated filtered columns
and calculates the average performances of only those columns. It then updates
the leaderboard accordingly.
"""
updated_average_performance = {}
for i in range(n_models):
performance = 0
num_tasks = 0
for task in selected_columns:
num_tasks += 1
performance += float(CoT_leaderboard_json[task][str(i)])
if num_tasks == 0:
num_tasks = 1
updated_average_performance[f"{i}"] = float(round(performance / num_tasks, 2))
return updated_average_performance
####################################################################################################
####### Few Shot Filters
####################################################################################################
def five_shot_filter_language(language_choice):
# Update the Global store for the currently selected filters
five_shot_currently_selected_filters["Language"] = language_choice
if isEmpty(five_shot_currently_selected_filters):
five_shot_df["Average Performance"] = original_five_shot_avg_perf
return five_shot_df
filtered_cols = get_filtered_columns(five_shot_currently_selected_filters)
updated_performance = five_shot_update_average_performance(filtered_cols)
# Convert dictionary keys to integers to match the DataFrame index
updated_performance_int = {int(k): v for k, v in updated_performance.items()}
# Map the values to the 'Average Performance' column based on index
five_shot_df["Average Performance"] = five_shot_df.index.map(updated_performance_int)
return five_shot_df[['T', 'Model', 'Model: Domain', 'Model: Accessibility', 'Model: Size Range', 'Size (B)', 'Average Performance'] + filtered_cols]
def five_shot_filter_task_type(task_type_choice):
# Update the Global store for the currently selected filters
five_shot_currently_selected_filters["Task Type"] = task_type_choice
if isEmpty(five_shot_currently_selected_filters):
five_shot_df["Average Performance"] = original_five_shot_avg_perf
return five_shot_df
filtered_cols = get_filtered_columns(five_shot_currently_selected_filters)
updated_performance = five_shot_update_average_performance(filtered_cols)
# Convert dictionary keys to integers to match the DataFrame index
updated_performance_int = {int(k): v for k, v in updated_performance.items()}
# Map the values to the 'Average Performance' column based on index
five_shot_df["Average Performance"] = five_shot_df.index.map(updated_performance_int)
return five_shot_df[['T', 'Model', 'Model: Domain', 'Model: Accessibility', 'Model: Size Range', 'Size (B)', 'Average Performance'] + filtered_cols]
def five_shot_filter_clinical_context(clinical_context_choice):
# Update the Global store for the currently selected filters
five_shot_currently_selected_filters["Clinical Context"] = clinical_context_choice
if isEmpty(five_shot_currently_selected_filters):
five_shot_df["Average Performance"] = original_five_shot_avg_perf
return five_shot_df
filtered_cols = get_filtered_columns(five_shot_currently_selected_filters)
updated_performance = five_shot_update_average_performance(filtered_cols)
# Convert dictionary keys to integers to match the DataFrame index
updated_performance_int = {int(k): v for k, v in updated_performance.items()}
# Map the values to the 'Average Performance' column based on index
five_shot_df["Average Performance"] = five_shot_df.index.map(updated_performance_int)
return five_shot_df[['T', 'Model', 'Model: Domain', 'Model: Accessibility', 'Model: Size Range', 'Size (B)', 'Average Performance'] + filtered_cols]
def five_shot_filter_applications(applications_choice):
# Update the Global store for the currently selected filters
five_shot_currently_selected_filters["Applications"] = applications_choice
if isEmpty(five_shot_currently_selected_filters):
five_shot_df["Average Performance"] = original_five_shot_avg_perf
return five_shot_df
filtered_cols = get_filtered_columns(five_shot_currently_selected_filters)
updated_performance = five_shot_update_average_performance(filtered_cols)
# Convert dictionary keys to integers to match the DataFrame index
updated_performance_int = {int(k): v for k, v in updated_performance.items()}
# Map the values to the 'Average Performance' column based on index
five_shot_df["Average Performance"] = five_shot_df.index.map(updated_performance_int)
return five_shot_df[['T', 'Model', 'Model: Domain', 'Model: Accessibility', 'Model: Size Range', 'Size (B)', 'Average Performance'] + filtered_cols]
def five_shot_filter_stage_options(stage_choice):
# Update the Global store for the currently selected filters
five_shot_currently_selected_filters["Clinical Stage"] = stage_choice
if isEmpty(five_shot_currently_selected_filters):
five_shot_df["Average Performance"] = original_five_shot_avg_perf
return five_shot_df
filtered_cols = get_filtered_columns(five_shot_currently_selected_filters)
updated_performance = five_shot_update_average_performance(filtered_cols)
# Convert dictionary keys to integers to match the DataFrame index
updated_performance_int = {int(k): v for k, v in updated_performance.items()}
# Map the values to the 'Average Performance' column based on index
five_shot_df["Average Performance"] = five_shot_df.index.map(updated_performance_int)
return five_shot_df[['T', 'Model', 'Model: Domain', 'Model: Accessibility', 'Model: Size Range', 'Size (B)', 'Average Performance'] + filtered_cols]
def five_shot_filter_data_access(data_access_choice):
# Update the Global store for the currently selected filters
five_shot_currently_selected_filters["Data Access"] = data_access_choice
if isEmpty(five_shot_currently_selected_filters):
five_shot_df["Average Performance"] = original_five_shot_avg_perf
return five_shot_df
filtered_cols = get_filtered_columns(five_shot_currently_selected_filters)
updated_performance = five_shot_update_average_performance(filtered_cols)
# Convert dictionary keys to integers to match the DataFrame index
updated_performance_int = {int(k): v for k, v in updated_performance.items()}
# Map the values to the 'Average Performance' column based on index
five_shot_df["Average Performance"] = five_shot_df.index.map(updated_performance_int)
return five_shot_df[['T', 'Model', 'Model: Domain', 'Model: Accessibility', 'Model: Size Range', 'Size (B)', 'Average Performance'] + filtered_cols]
def five_shot_update_average_performance(selected_columns):
"""
When a user clicks filters to filter certain tasks, the average performance
of the model should update. This function takes uses the updated filtered columns
and calculates the average performances of only those columns. It then updates
the leaderboard accordingly.
"""
updated_average_performance = {}
for i in range(n_models):
performance = 0
num_tasks = 0
for task in selected_columns:
num_tasks += 1
performance += float(five_shot_leaderboard_json[task][str(i)])
if num_tasks == 0:
num_tasks = 1
updated_average_performance[f"{i}"] = float(round(performance / num_tasks, 2))
return updated_average_performance
####################################################################################################
###### Zero Shot Filters
####################################################################################################
def zero_shot_filter_language(language_choice):
# Update the Global store for the currently selected filters
zero_shot_currently_selected_filters["Language"] = language_choice
if isEmpty(zero_shot_currently_selected_filters):
zero_shot_df["Average Performance"] = original_zero_shot_avg_perf
return zero_shot_df
filtered_cols = get_filtered_columns(zero_shot_currently_selected_filters)
updated_performance = zero_shot_update_average_performance(filtered_cols)
# Convert dictionary keys to integers to match the DataFrame index
updated_performance_int = {int(k): v for k, v in updated_performance.items()}
# Map the values to the 'Average Performance' column based on index
zero_shot_df["Average Performance"] = zero_shot_df.index.map(updated_performance_int)
return zero_shot_df[['T', 'Model', 'Model: Domain', 'Model: Accessibility', 'Model: Size Range', 'Size (B)', 'Average Performance'] + filtered_cols]
def zero_shot_filter_task_type(task_type_choice):
# Update the Global store for the currently selected filters
zero_shot_currently_selected_filters["Task Type"] = task_type_choice
if isEmpty(zero_shot_currently_selected_filters):
zero_shot_df["Average Performance"] = original_zero_shot_avg_perf
return zero_shot_df
filtered_cols = get_filtered_columns(zero_shot_currently_selected_filters)
updated_performance = zero_shot_update_average_performance(filtered_cols)
# Convert dictionary keys to integers to match the DataFrame index
updated_performance_int = {int(k): v for k, v in updated_performance.items()}
# Map the values to the 'Average Performance' column based on index
zero_shot_df["Average Performance"] = zero_shot_df.index.map(updated_performance_int)
return zero_shot_df[['T', 'Model', 'Model: Domain', 'Model: Accessibility', 'Model: Size Range', 'Size (B)', 'Average Performance'] + filtered_cols]
def zero_shot_filter_clinical_context(clinical_context_choice):
# Update the Global store for the currently selected filters
zero_shot_currently_selected_filters["Clinical Context"] = clinical_context_choice
if isEmpty(zero_shot_currently_selected_filters):
zero_shot_df["Average Performance"] = original_zero_shot_avg_perf
return zero_shot_df
filtered_cols = get_filtered_columns(zero_shot_currently_selected_filters)
updated_performance = zero_shot_update_average_performance(filtered_cols)
# Convert dictionary keys to integers to match the DataFrame index
updated_performance_int = {int(k): v for k, v in updated_performance.items()}
# Map the values to the 'Average Performance' column based on index
zero_shot_df["Average Performance"] = zero_shot_df.index.map(updated_performance_int)
return zero_shot_df[['T', 'Model', 'Model: Domain', 'Model: Accessibility', 'Model: Size Range', 'Size (B)', 'Average Performance'] + filtered_cols]
def zero_shot_filter_applications(applications_choice):
# Update the Global store for the currently selected filters
zero_shot_currently_selected_filters["Applications"] = applications_choice
if isEmpty(zero_shot_currently_selected_filters):
zero_shot_df["Average Performance"] = original_zero_shot_avg_perf
return zero_shot_df
filtered_cols = get_filtered_columns(zero_shot_currently_selected_filters)
updated_performance = zero_shot_update_average_performance(filtered_cols)
# Convert dictionary keys to integers to match the DataFrame index
updated_performance_int = {int(k): v for k, v in updated_performance.items()}
# Map the values to the 'Average Performance' column based on index
zero_shot_df["Average Performance"] = zero_shot_df.index.map(updated_performance_int)
return zero_shot_df[['T', 'Model', 'Model: Domain', 'Model: Accessibility', 'Model: Size Range', 'Size (B)', 'Average Performance'] + filtered_cols]
def zero_shot_filter_stage_options(stage_choice):
# Update the Global store for the currently selected filters
zero_shot_currently_selected_filters["Clinical Stage"] = stage_choice
if isEmpty(zero_shot_currently_selected_filters):
zero_shot_df["Average Performance"] = original_zero_shot_avg_perf
return zero_shot_df
filtered_cols = get_filtered_columns(zero_shot_currently_selected_filters)
updated_performance = zero_shot_update_average_performance(filtered_cols)
# Convert dictionary keys to integers to match the DataFrame index
updated_performance_int = {int(k): v for k, v in updated_performance.items()}
# Map the values to the 'Average Performance' column based on index
zero_shot_df["Average Performance"] = zero_shot_df.index.map(updated_performance_int)
return zero_shot_df[['T', 'Model', 'Model: Domain', 'Model: Accessibility', 'Model: Size Range', 'Size (B)', 'Average Performance'] + filtered_cols]
def zero_shot_filter_data_access(data_access_choice):
# Update the Global store for the currently selected filters
zero_shot_currently_selected_filters["Data Access"] = data_access_choice
if isEmpty(zero_shot_currently_selected_filters):
zero_shot_df["Average Performance"] = original_zero_shot_avg_perf
return zero_shot_df
filtered_cols = get_filtered_columns(zero_shot_currently_selected_filters)
updated_performance = zero_shot_update_average_performance(filtered_cols)
# Convert dictionary keys to integers to match the DataFrame index
updated_performance_int = {int(k): v for k, v in updated_performance.items()}
# Map the values to the 'Average Performance' column based on index
zero_shot_df["Average Performance"] = zero_shot_df.index.map(updated_performance_int)
return zero_shot_df[['T', 'Model', 'Model: Domain', 'Model: Accessibility', 'Model: Size Range', 'Size (B)', 'Average Performance'] + filtered_cols]
def zero_shot_update_average_performance(selected_columns):
"""
When a user clicks filters to filter certain tasks, the average performance
of the model should update. This function takes uses the updated filtered columns
and calculates the average performances of only those columns. It then updates
the leaderboard accordingly.
"""
updated_average_performance = {}
for i in range(n_models):
performance = 0
num_tasks = 0
for task in selected_columns:
num_tasks += 1
performance += float(zero_shot_leaderboard_json[task][str(i)])
if num_tasks == 0:
num_tasks = 1
updated_average_performance[f"{i}"] = float(round(performance / num_tasks, 2))
return updated_average_performance
def postprocess(self, value: pd.DataFrame) -> DataframeData:
# Ensure that the "Average Performance" column exists
if "Average Performance" in value.columns:
# Sort the DataFrame by the "average performance" column in descending order
value = value.sort_values(by="Average Performance", ascending=False)
return DataframeData(
headers=list(value.columns), # type: ignore
data=value.to_dict(orient="split")["data"], # type: ignore
)
if value is None:
return self.postprocess(pd.DataFrame({"column 1": []}))
if isinstance(value, (str, pd.DataFrame)):
if isinstance(value, str):
value = pd.read_csv(value) # type: ignore
if len(value) == 0:
return DataframeData(
headers=list(value.columns), # type: ignore
data=[[]], # type: ignore
)
return DataframeData(
headers=list(value.columns), # type: ignore
data=value.to_dict(orient="split")["data"], # type: ignore
)
elif isinstance(value, Styler):
if semantic_version.Version(pd.__version__) < semantic_version.Version(
"1.5.0"
):
raise ValueError(
"Styler objects are only supported in pandas version 1.5.0 or higher. Please try: `pip install --upgrade pandas` to use this feature."
)
if self.interactive:
warnings.warn(
"Cannot display Styler object in interactive mode. Will display as a regular pandas dataframe instead."
)
df: pd.DataFrame = value.data # type: ignore
if len(df) == 0:
return DataframeData(
headers=list(df.columns),
data=[[]],
metadata=self.__extract_metadata(value), # type: ignore
)
return DataframeData(
headers=list(df.columns),
data=df.to_dict(orient="split")["data"], # type: ignore
metadata=self.__extract_metadata(value), # type: ignore
)
# Models are sorted in order of decreasing average performance (best performance at the top!)
Leaderboard.postprocess = postprocess
####################################################################################################
###### Leaderboard
####################################################################################################
with gr.Blocks() as app:
gr.Markdown("# BRIDGE (Benchmarking Large Language Models for Understanding Real-world Clinical Practice Text)")
with gr.Tabs():
with gr.Tab("README"):
# gr.Markdown((Path(__file__).parent / "docs.md").read_text())
html_content = (Path(__file__).parent / "docs.md").read_text()
gr.HTML(html_content)
with gr.Tab("Zero-Shot"):
leaderboard = Leaderboard(
value=zero_shot_df,
select_columns = None,
search_columns=SearchColumns(primary_column = "Model", secondary_columns = "",
placeholder="Search by Model Name",
label="Model Search"),
hide_columns=["Model: Size Range", "Model: Accessibility"],
filter_columns=["Model: Domain", "Model: Size Range", "Model: Accessibility"],
datatype=config.TYPES,
)
# Language Filter
all_languages = ['English', 'Spanish',
'Chinese', 'Norwegian',
'Russian', 'Portuguese',
'German', 'Japanese', 'French']
language_options = gr.CheckboxGroup(all_languages, label="Filter Task: Language")
# Task Type Filter
all_task_types = ['Question Answering', 'Text Classification', 'Named Entity Recognition',
'Normalization and Coding', 'Natural Language Inference', 'Summarization',
'Event Extraction', 'Semantic Similarity']
task_type_options = gr.CheckboxGroup(all_task_types, label="Filter Task: Task Type")
all_clinical_contexts = ['Neurology', 'Oncology', 'Radiology', 'Pulmonology',
'Cardiology', 'Dermatology', 'Critical Care', 'Nephrology',
'General', 'Endocrinology', 'Pediatrics', 'Pharmacology',
'Gastroenterology', 'Psychology']
cc_options = gr.CheckboxGroup(all_clinical_contexts, label="Filter Task: Clinical Context")
# Applications Filter
all_applications = ['Procudure information', 'Concept standarization',
'Specialist recommendation', 'Negation identification',
'Clinical trial matching', 'Consultation summarization',
'Semantic relation', 'Post-discharge patient management',
'De-identification', 'Billing & Coding', 'Phenotyping',
'Data organization', 'Temporal & Causality relation',
'Summarization', 'Screen & Consultation', 'Diagnosis',
'ADE & Incidents', 'Risk factor extraction', 'Prognosis',
'Medication information']
application_options = gr.CheckboxGroup(all_applications, label="Filter Task: Clinical Application")
# Clinical Stage Filter
all_stages = ['Treatment and Intervention', 'Triage and Referral',
'Initial Assessment', 'Discharge and Administration',
'Research', 'Diagnosis and Prognosis']
stage_options = gr.CheckboxGroup(all_stages, label="Filter Task: Clinical Stage")
# Data Access Filter
all_data_access = ['Open Access', 'Regulated']
da_options = gr.CheckboxGroup(all_data_access, label="Filter Task: Data Access")
language_options.change(fn=zero_shot_filter_language, inputs=language_options, outputs=leaderboard)
task_type_options.change(fn=zero_shot_filter_task_type, inputs=task_type_options, outputs=leaderboard)
cc_options.change(fn=zero_shot_filter_clinical_context, inputs=cc_options, outputs=leaderboard)
application_options.change(fn=zero_shot_filter_applications, inputs=application_options, outputs=leaderboard)
da_options.change(fn=zero_shot_filter_data_access, inputs=da_options, outputs=leaderboard)
stage_options.change(fn=zero_shot_filter_stage_options, inputs=stage_options, outputs=leaderboard)
with gr.Tab("Few-Shot"):
leaderboard = Leaderboard(
value=five_shot_df,
select_columns = None,
search_columns=SearchColumns(primary_column = "Model", secondary_columns = "",
placeholder="Search by Model Name",
label="Model Search"),
hide_columns=["Model: Size Range", "Model: Accessibility"],
filter_columns=["Model: Domain", "Model: Size Range", "Model: Accessibility"],
datatype=config.TYPES,
)
# Language Filter
all_languages = ['English', 'Spanish',
'Chinese', 'Norwegian',
'Russian', 'Portuguese',
'German', 'Japanese', 'French']
language_options = gr.CheckboxGroup(all_languages, label="Filter Task: Language")
# Task Type Filter
all_task_types = ['Question Answering', 'Text Classification', 'Named Entity Recognition',
'Normalization and Coding', 'Natural Language Inference', 'Summarization',
'Event Extraction', 'Semantic Similarity']
task_type_options = gr.CheckboxGroup(all_task_types, label="Filter Task: Task Type")
# Clinical Context Filter
all_clinical_contexts = ['Neurology', 'Oncology', 'Radiology', 'Pulmonology',
'Cardiology', 'Dermatology', 'Critical Care', 'Nephrology',
'General', 'Endocrinology', 'Pediatrics', 'Pharmacology',
'Gastroenterology', 'Psychology']
cc_options = gr.CheckboxGroup(all_clinical_contexts, label="Filter Task: Clinical Context")
# Applications Filter
all_applications = ['Procudure information', 'Concept standarization',
'Specialist recommendation', 'Negation identification',
'Clinical trial matching', 'Consultation summarization',
'Semantic relation', 'Post-discharge patient management',
'De-identification', 'Billing & Coding', 'Phenotyping',
'Data organization', 'Temporal & Causality relation',
'Summarization', 'Screen & Consultation', 'Diagnosis',
'ADE & Incidents', 'Risk factor extraction', 'Prognosis',
'Medication information']
application_options = gr.CheckboxGroup(all_applications, label="Filter Task: Clinical Application")
# Clinical Stage Filter
all_stages = ['Treatment and Intervention', 'Triage and Referral',
'Initial Assessment', 'Discharge and Administration',
'Research', 'Diagnosis and Prognosis']
stage_options = gr.CheckboxGroup(all_stages, label="Filter Task: Clinical Stage")
# Data Access Filter
all_data_access = ['Open Access', 'Regulated']
da_options = gr.CheckboxGroup(all_data_access, label="Filter Task: Data Access")
language_options.change(fn=five_shot_filter_language, inputs=language_options, outputs=leaderboard)
task_type_options.change(fn=five_shot_filter_task_type, inputs=task_type_options, outputs=leaderboard)
cc_options.change(fn=five_shot_filter_clinical_context, inputs=cc_options, outputs=leaderboard)
application_options.change(fn=five_shot_filter_applications, inputs=application_options, outputs=leaderboard)
da_options.change(fn=five_shot_filter_data_access, inputs=da_options, outputs=leaderboard)
stage_options.change(fn=five_shot_filter_stage_options, inputs=stage_options, outputs=leaderboard)
with gr.Tab("CoT"):
leaderboard = Leaderboard(
value=cot_df,
select_columns = None,
search_columns=SearchColumns(primary_column = "Model", secondary_columns = "",
placeholder="Search by Model Name",
label="Model Search"),
hide_columns=["Model: Size Range", "Model: Accessibility"],
filter_columns=["Model: Domain", "Model: Size Range", "Model: Accessibility"],
datatype=config.TYPES,
)
# Language Filter
all_languages = ['English', 'Spanish',
'Chinese', 'Norwegian',
'Russian', 'Portuguese',
'German', 'Japanese', 'French']
language_options = gr.CheckboxGroup(all_languages, label="Filter Task: Language")
# Task Type Filter
all_task_types = ['Question Answering', 'Text Classification', 'Named Entity Recognition',
'Normalization and Coding', 'Natural Language Inference', 'Summarization',
'Event Extraction', 'Semantic Similarity']
task_type_options = gr.CheckboxGroup(all_task_types, label="Filter Task: Task Type")
# Clinical Context Filter
all_clinical_contexts = ['Neurology', 'Oncology', 'Radiology', 'Pulmonology',
'Cardiology', 'Dermatology', 'Critical Care', 'Nephrology',
'General', 'Endocrinology', 'Pediatrics', 'Pharmacology',
'Gastroenterology', 'Psychology']
cc_options = gr.CheckboxGroup(all_clinical_contexts, label="Filter Task: Clinical Context")
# Applications Filter
all_applications = ['Procudure information', 'Concept standarization',
'Specialist recommendation', 'Negation identification',
'Clinical trial matching', 'Consultation summarization',
'Semantic relation', 'Post-discharge patient management',
'De-identification', 'Billing & Coding', 'Phenotyping',
'Data organization', 'Temporal & Causality relation',
'Summarization', 'Screen & Consultation', 'Diagnosis',
'ADE & Incidents', 'Risk factor extraction', 'Prognosis',
'Medication information']
application_options = gr.CheckboxGroup(all_applications, label="Filter Task: Clinical Application")
# Clinical Stage Filter
all_stages = ['Treatment and Intervention', 'Triage and Referral',
'Initial Assessment', 'Discharge and Administration',
'Research', 'Diagnosis and Prognosis']
stage_options = gr.CheckboxGroup(all_stages, label="Filter Task: Clinical Stage")
# Data Access Filter
all_data_access = ['Open Access', 'Regulated']
da_options = gr.CheckboxGroup(all_data_access, label="Filter Task: Data Access")
language_options.change(fn=cot_filter_language, inputs=language_options, outputs=leaderboard)
task_type_options.change(fn=cot_filter_task_type, inputs=task_type_options, outputs=leaderboard)
cc_options.change(fn=cot_filter_clinical_context, inputs=cc_options, outputs=leaderboard)
application_options.change(fn=cot_filter_applications, inputs=application_options, outputs=leaderboard)
da_options.change(fn=cot_filter_data_access, inputs=da_options, outputs=leaderboard)
stage_options.change(fn=cot_filter_stage_options, inputs=stage_options, outputs=leaderboard)
if __name__ == "__main__":
app.launch()
|