Delete app.py
Browse files
app.py
DELETED
@@ -1,923 +0,0 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
from gradio_leaderboard import Leaderboard, SelectColumns, SearchColumns
|
3 |
-
import config
|
4 |
-
from pathlib import Path
|
5 |
-
import pandas as pd
|
6 |
-
import json
|
7 |
-
|
8 |
-
import warnings
|
9 |
-
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union, Literal
|
10 |
-
import pandas as pd
|
11 |
-
from pandas.io.formats.style import Styler
|
12 |
-
|
13 |
-
import semantic_version
|
14 |
-
from dataclasses import dataclass, field
|
15 |
-
|
16 |
-
from gradio.components import Component
|
17 |
-
from gradio.data_classes import GradioModel
|
18 |
-
from gradio.events import Events
|
19 |
-
|
20 |
-
@dataclass
|
21 |
-
class SelectColumns:
|
22 |
-
default_selection: Optional[list[str]] = field(default_factory=list)
|
23 |
-
cant_deselect: Optional[list[str]] = field(default_factory=list)
|
24 |
-
allow: bool = True
|
25 |
-
label: Optional[str] = None
|
26 |
-
show_label: bool = True
|
27 |
-
info: Optional[str] = None
|
28 |
-
|
29 |
-
@dataclass
|
30 |
-
class ColumnFilter:
|
31 |
-
column: str
|
32 |
-
type: Literal["slider", "dropdown", "checkboxgroup", "boolean"] = None
|
33 |
-
default: Optional[Union[int, float, List[Tuple[str, str]]]] = None
|
34 |
-
choices: Optional[Union[int, float, List[Tuple[str, str]]]] = None
|
35 |
-
label: Optional[str] = None
|
36 |
-
info: Optional[str] = None
|
37 |
-
show_label: bool = True
|
38 |
-
min: Optional[Union[int, float]] = None
|
39 |
-
max: Optional[Union[int, float]] = None
|
40 |
-
|
41 |
-
class DataframeData(GradioModel):
|
42 |
-
headers: List[str]
|
43 |
-
data: Union[List[List[Any]], List[Tuple[Any, ...]]]
|
44 |
-
metadata: Optional[Dict[str, Optional[List[Any]]]] = None
|
45 |
-
|
46 |
-
|
47 |
-
abs_path = Path(__file__).parent
|
48 |
-
|
49 |
-
# Load the leaderboard data for
|
50 |
-
zero_shot_df = pd.read_json("leaderboards/Zero-Shot_leaderboard_data.json", precise_float=True)
|
51 |
-
five_shot_df = pd.read_json("leaderboards/Few-Shot_leaderboard_data.json", precise_float=True)
|
52 |
-
cot_df = pd.read_json("leaderboards/CoT_leaderboard_data.json", precise_float=True)
|
53 |
-
|
54 |
-
# Original Average Performances
|
55 |
-
original_zero_shot_avg_perf = zero_shot_df["Average Performance"]
|
56 |
-
original_five_shot_avg_perf = five_shot_df["Average Performance"]
|
57 |
-
original_cot_avg_perf = cot_df["Average Performance"]
|
58 |
-
|
59 |
-
# Load the task information json data
|
60 |
-
with open("task_information.json", 'r') as file:
|
61 |
-
task_information_json = json.load(file)
|
62 |
-
|
63 |
-
cot_currently_selected_filters = {
|
64 |
-
"Language": [],
|
65 |
-
"Task Type": [],
|
66 |
-
"Clinical Context": [],
|
67 |
-
"Data Access": [],
|
68 |
-
"Applications": [],
|
69 |
-
"Clinical Stage": []
|
70 |
-
}
|
71 |
-
|
72 |
-
five_shot_currently_selected_filters = {
|
73 |
-
"Language": [],
|
74 |
-
"Task Type": [],
|
75 |
-
"Clinical Context": [],
|
76 |
-
"Data Access": [],
|
77 |
-
"Applications": [],
|
78 |
-
"Clinical Stage": []
|
79 |
-
}
|
80 |
-
|
81 |
-
zero_shot_currently_selected_filters = {
|
82 |
-
"Language": [],
|
83 |
-
"Task Type": [],
|
84 |
-
"Clinical Context": [],
|
85 |
-
"Data Access": [],
|
86 |
-
"Applications": [],
|
87 |
-
"Clinical Stage": []
|
88 |
-
}
|
89 |
-
|
90 |
-
# with open("/Users/kevinxie/Desktop/Clinical NLP/Clinical-Text-Leaderboard/leaderboard_data.json", 'r') as file:
|
91 |
-
with open("leaderboards/Few-Shot_leaderboard_data.json", 'r') as file:
|
92 |
-
five_shot_leaderboard_json = json.load(file)
|
93 |
-
|
94 |
-
with open("leaderboards/CoT_leaderboard_data.json", 'r') as file:
|
95 |
-
CoT_leaderboard_json = json.load(file)
|
96 |
-
|
97 |
-
with open("leaderboards/Zero-Shot_leaderboard_data.json", 'r') as file:
|
98 |
-
zero_shot_leaderboard_json = json.load(file)
|
99 |
-
|
100 |
-
valid_tasks = {'NUBES', 'NorSynthClinical-NER', 'MEDIQA 2023-sum-A', 'Medication extraction',
|
101 |
-
'IMCS-V2-DAC', 'Cantemist-Coding', 'IFMIR-NER', 'EHRQA-QA', 'Ex4CDS', 'MedDG',
|
102 |
-
'MTS-Temporal', 'CHIP-MDCFNPC', 'n2c2 2014-Diabetes', 'MIMIC-III Outcome.LoS',
|
103 |
-
'n2c2 2014-Hypertension', 'RuCCoN', 'CARES-ICD10 Chapter', 'RuDReC-NER', 'MIMIC-IV DiReCT.Dis',
|
104 |
-
'n2c2 2014-Medication', 'iCorpus', 'Brateca-Hospitalization', 'n2c2 2010-Assertion',
|
105 |
-
'NorSynthClinical-PHI', 'IFMIR - NER&factuality', 'JP-STS', 'NorSynthClinical-RE',
|
106 |
-
'n2c2 2010-Concept', 'BARR2', 'IMCS-V2-NER', 'IMCS-V2-MRG', 'cMedQA', 'MedSTS',
|
107 |
-
'BRONCO150-NER&Status', 'n2c2 2018-ADE&medication', 'CLISTER', 'ClinicalNotes-UPMC',
|
108 |
-
'PPTS', 'CLIP', 'IMCS-V2-SR', 'EHRQA-Sub department', 'BrainMRI-AIS', 'Brateca-Mortality',
|
109 |
-
'meddocan', 'CHIP-CDEE', 'CAS-evidence', 'MEDIQA 2019-RQE', 'Cantemis-Norm', 'MEDIQA 2023-sum-B',
|
110 |
-
'CHIP-CTC', 'C-EMRS', 'CARES ICD10 Block', 'Cantemis-NER', 'CLINpt-NER', 'MEDIQA 2023-chat-A',
|
111 |
-
'n2c2 2014-De-identification', 'n2c2 2014-Hyperlipidemia', 'EHRQA-Primary department',
|
112 |
-
'ADE-Drug dosage', 'IFMIR-Incident type', 'MIMIC-III Outcome.Mortality', 'n2c2 2006-De-identification',
|
113 |
-
'CAS-label', 'MIMIC-IV CDM', 'CodiEsp-ICD-10-CM', 'n2c2 2010-Relation', 'CARES-ICD10 Subblock',
|
114 |
-
'MIE', 'HealthCareMagic-100k', 'ADE-Identification', 'MIMIC-IV DiReCT.PDD', 'ADE-Extraction',
|
115 |
-
'DialMed', 'GOUT-CC-Consensus', 'GraSSCo PHI', 'RuMedNLI', 'RuMedDaNet', 'CBLUE-CDN', 'icliniq-10k',
|
116 |
-
'CARDIO-DE', 'CARES-Area', 'DiSMed-NER', 'CodiEsp-ICD-10-PCS', 'MedNLI', 'MTS', 'MIMIC-IV BHC',
|
117 |
-
'n2c2 2014-CAD'}
|
118 |
-
|
119 |
-
n_models = int(list(zero_shot_leaderboard_json["Model"].keys())[-1]) + 1
|
120 |
-
|
121 |
-
def get_filtered_columns(filter_selections):
|
122 |
-
"""
|
123 |
-
Given an array of selected filters, this function will return a list of all
|
124 |
-
the columns that match the criteria.
|
125 |
-
|
126 |
-
Input:
|
127 |
-
filter_selections: dictionary of all task type filter selections
|
128 |
-
|
129 |
-
Output:
|
130 |
-
Returns a list of all valid tasks to display (by task name)
|
131 |
-
"""
|
132 |
-
# Need to add a flag to this filter so that it only displays those that match all attributes
|
133 |
-
valid_columns = []
|
134 |
-
for task in task_information_json:
|
135 |
-
task_info = task_information_json[task]
|
136 |
-
|
137 |
-
# Flag to keep track of whether this task is valid
|
138 |
-
isValid = True
|
139 |
-
|
140 |
-
# Iterate through each attribute of the task
|
141 |
-
for attribute in task_info:
|
142 |
-
# If the filter is empty
|
143 |
-
if not filter_selections[attribute]:
|
144 |
-
continue
|
145 |
-
|
146 |
-
value = task_info[attribute]
|
147 |
-
|
148 |
-
# print(filter_selections[attribute])
|
149 |
-
|
150 |
-
# Handle edge case for multiple categories
|
151 |
-
if "," in value:
|
152 |
-
all_categories = value.split(", ")
|
153 |
-
|
154 |
-
flag = False
|
155 |
-
for category in all_categories:
|
156 |
-
if category in filter_selections[attribute]:
|
157 |
-
flag = True
|
158 |
-
break
|
159 |
-
|
160 |
-
if flag: # one category matches
|
161 |
-
isValid = True
|
162 |
-
|
163 |
-
else: # none of the categories matched
|
164 |
-
isValid = False
|
165 |
-
|
166 |
-
# Handle Brazilian Edge Case
|
167 |
-
elif (value == 'Portuguese\n(Brazilian)') and ('Portuguese' in filter_selections[attribute]):
|
168 |
-
isValid = True
|
169 |
-
break
|
170 |
-
|
171 |
-
elif value not in filter_selections[attribute]:
|
172 |
-
# if filter_selections[attribute] not in task_info[attribute]:
|
173 |
-
isValid = False
|
174 |
-
# break
|
175 |
-
|
176 |
-
if task in valid_tasks and isValid:
|
177 |
-
valid_columns.append(task)
|
178 |
-
|
179 |
-
return valid_columns
|
180 |
-
|
181 |
-
def isEmpty(currently_selected_filters):
|
182 |
-
"""
|
183 |
-
Checks if there are no selected filters
|
184 |
-
"""
|
185 |
-
flag = True
|
186 |
-
for key, value in currently_selected_filters.items():
|
187 |
-
if not value:
|
188 |
-
continue
|
189 |
-
else:
|
190 |
-
return False
|
191 |
-
|
192 |
-
return True
|
193 |
-
|
194 |
-
|
195 |
-
####################################################################################################
|
196 |
-
####### CoT Filters
|
197 |
-
####################################################################################################
|
198 |
-
|
199 |
-
|
200 |
-
def cot_filter_language(language_choice):
|
201 |
-
# Update the Global store for the currently selected filters
|
202 |
-
cot_currently_selected_filters["Language"] = language_choice
|
203 |
-
|
204 |
-
if isEmpty(cot_currently_selected_filters):
|
205 |
-
cot_df["Average Performance"] = original_cot_avg_perf
|
206 |
-
return cot_df
|
207 |
-
|
208 |
-
filtered_cols = get_filtered_columns(cot_currently_selected_filters)
|
209 |
-
|
210 |
-
updated_performance = cot_update_average_performance(filtered_cols)
|
211 |
-
|
212 |
-
# Convert dictionary keys to integers to match the DataFrame index
|
213 |
-
updated_performance_int = {int(k): v for k, v in updated_performance.items()}
|
214 |
-
|
215 |
-
# Map the values to the 'Average Performance' column based on index
|
216 |
-
cot_df["Average Performance"] = cot_df.index.map(updated_performance_int)
|
217 |
-
|
218 |
-
return cot_df[['T', 'Model', 'Model: Domain', 'Model: Accessibility', 'Size (B)', 'Average Performance'] + filtered_cols]
|
219 |
-
|
220 |
-
def cot_filter_task_type(task_type_choice):
|
221 |
-
# Update the Global store for the currently selected filters
|
222 |
-
cot_currently_selected_filters["Task Type"] = task_type_choice
|
223 |
-
|
224 |
-
if isEmpty(cot_currently_selected_filters):
|
225 |
-
cot_df["Average Performance"] = original_cot_avg_perf
|
226 |
-
return cot_df
|
227 |
-
|
228 |
-
filtered_cols = get_filtered_columns(cot_currently_selected_filters)
|
229 |
-
|
230 |
-
updated_performance = cot_update_average_performance(filtered_cols)
|
231 |
-
|
232 |
-
# Convert dictionary keys to integers to match the DataFrame index
|
233 |
-
updated_performance_int = {int(k): v for k, v in updated_performance.items()}
|
234 |
-
|
235 |
-
# Map the values to the 'Average Performance' column based on index
|
236 |
-
cot_df["Average Performance"] = cot_df.index.map(updated_performance_int)
|
237 |
-
|
238 |
-
return cot_df[['T', 'Model', 'Model: Domain', 'Model: Accessibility', 'Model: Size Range', 'Size (B)', 'Average Performance'] + filtered_cols]
|
239 |
-
|
240 |
-
def cot_filter_clinical_context(clinical_context_choice):
|
241 |
-
# Update the Global store for the currently selected filters
|
242 |
-
cot_currently_selected_filters["Clinical Context"] = clinical_context_choice
|
243 |
-
|
244 |
-
if isEmpty(cot_currently_selected_filters):
|
245 |
-
cot_df["Average Performance"] = original_cot_avg_perf
|
246 |
-
return cot_df
|
247 |
-
|
248 |
-
filtered_cols = get_filtered_columns(cot_currently_selected_filters)
|
249 |
-
|
250 |
-
updated_performance = cot_update_average_performance(filtered_cols)
|
251 |
-
|
252 |
-
# Convert dictionary keys to integers to match the DataFrame index
|
253 |
-
updated_performance_int = {int(k): v for k, v in updated_performance.items()}
|
254 |
-
|
255 |
-
# Map the values to the 'Average Performance' column based on index
|
256 |
-
cot_df["Average Performance"] = cot_df.index.map(updated_performance_int)
|
257 |
-
|
258 |
-
return cot_df[['T', 'Model', 'Model: Domain', 'Model: Accessibility', 'Model: Size Range', 'Size (B)', 'Average Performance'] + filtered_cols]
|
259 |
-
|
260 |
-
def cot_filter_applications(applications_choice):
|
261 |
-
# Update the Global store for the currently selected filters
|
262 |
-
cot_currently_selected_filters["Applications"] = applications_choice
|
263 |
-
|
264 |
-
if isEmpty(cot_currently_selected_filters):
|
265 |
-
cot_df["Average Performance"] = original_cot_avg_perf
|
266 |
-
return cot_df
|
267 |
-
|
268 |
-
filtered_cols = get_filtered_columns(cot_currently_selected_filters)
|
269 |
-
|
270 |
-
updated_performance = cot_update_average_performance(filtered_cols)
|
271 |
-
|
272 |
-
# Convert dictionary keys to integers to match the DataFrame index
|
273 |
-
updated_performance_int = {int(k): v for k, v in updated_performance.items()}
|
274 |
-
|
275 |
-
# Map the values to the 'Average Performance' column based on index
|
276 |
-
cot_df["Average Performance"] = cot_df.index.map(updated_performance_int)
|
277 |
-
|
278 |
-
return cot_df[['T', 'Model', 'Model: Domain', 'Model: Accessibility', 'Model: Size Range', 'Size (B)', 'Average Performance'] + filtered_cols]
|
279 |
-
|
280 |
-
def cot_filter_stage_options(stage_choice):
|
281 |
-
# Update the Global store for the currently selected filters
|
282 |
-
cot_currently_selected_filters["Clinical Stage"] = stage_choice
|
283 |
-
|
284 |
-
if isEmpty(cot_currently_selected_filters):
|
285 |
-
cot_df["Average Performance"] = original_cot_avg_perf
|
286 |
-
return cot_df
|
287 |
-
|
288 |
-
filtered_cols = get_filtered_columns(cot_currently_selected_filters)
|
289 |
-
|
290 |
-
updated_performance = cot_update_average_performance(filtered_cols)
|
291 |
-
|
292 |
-
# Convert dictionary keys to integers to match the DataFrame index
|
293 |
-
updated_performance_int = {int(k): v for k, v in updated_performance.items()}
|
294 |
-
|
295 |
-
# Map the values to the 'Average Performance' column based on index
|
296 |
-
cot_df["Average Performance"] = cot_df.index.map(updated_performance_int)
|
297 |
-
|
298 |
-
return cot_df[['T', 'Model', 'Model: Domain', 'Model: Accessibility', 'Model: Size Range', 'Size (B)', 'Average Performance'] + filtered_cols]
|
299 |
-
|
300 |
-
def cot_filter_data_access(data_access_choice):
|
301 |
-
# Update the Global store for the currently selected filters
|
302 |
-
cot_currently_selected_filters["Data Access"] = data_access_choice
|
303 |
-
|
304 |
-
if isEmpty(cot_currently_selected_filters):
|
305 |
-
cot_df["Average Performance"] = original_cot_avg_perf
|
306 |
-
return cot_df
|
307 |
-
|
308 |
-
filtered_cols = get_filtered_columns(cot_currently_selected_filters)
|
309 |
-
|
310 |
-
updated_performance = cot_update_average_performance(filtered_cols)
|
311 |
-
|
312 |
-
# Convert dictionary keys to integers to match the DataFrame index
|
313 |
-
updated_performance_int = {int(k): v for k, v in updated_performance.items()}
|
314 |
-
|
315 |
-
# Map the values to the 'Average Performance' column based on index
|
316 |
-
cot_df["Average Performance"] = cot_df.index.map(updated_performance_int)
|
317 |
-
|
318 |
-
return cot_df[['T', 'Model', 'Model: Domain', 'Model: Accessibility', 'Model: Size Range', 'Size (B)', 'Average Performance'] + filtered_cols]
|
319 |
-
|
320 |
-
def cot_update_average_performance(selected_columns):
|
321 |
-
"""
|
322 |
-
When a user clicks filters to filter certain tasks, the average performance
|
323 |
-
of the model should update. This function takes uses the updated filtered columns
|
324 |
-
and calculates the average performances of only those columns. It then updates
|
325 |
-
the leaderboard accordingly.
|
326 |
-
"""
|
327 |
-
updated_average_performance = {}
|
328 |
-
|
329 |
-
for i in range(n_models):
|
330 |
-
performance = 0
|
331 |
-
|
332 |
-
num_tasks = 0
|
333 |
-
for task in selected_columns:
|
334 |
-
num_tasks += 1
|
335 |
-
performance += float(CoT_leaderboard_json[task][str(i)])
|
336 |
-
|
337 |
-
if num_tasks == 0:
|
338 |
-
num_tasks = 1
|
339 |
-
|
340 |
-
updated_average_performance[f"{i}"] = float(round(performance / num_tasks, 2))
|
341 |
-
|
342 |
-
return updated_average_performance
|
343 |
-
|
344 |
-
|
345 |
-
####################################################################################################
|
346 |
-
####### Few Shot Filters
|
347 |
-
####################################################################################################
|
348 |
-
|
349 |
-
def five_shot_filter_language(language_choice):
|
350 |
-
# Update the Global store for the currently selected filters
|
351 |
-
five_shot_currently_selected_filters["Language"] = language_choice
|
352 |
-
|
353 |
-
if isEmpty(five_shot_currently_selected_filters):
|
354 |
-
five_shot_df["Average Performance"] = original_five_shot_avg_perf
|
355 |
-
return five_shot_df
|
356 |
-
|
357 |
-
filtered_cols = get_filtered_columns(five_shot_currently_selected_filters)
|
358 |
-
|
359 |
-
updated_performance = five_shot_update_average_performance(filtered_cols)
|
360 |
-
|
361 |
-
# Convert dictionary keys to integers to match the DataFrame index
|
362 |
-
updated_performance_int = {int(k): v for k, v in updated_performance.items()}
|
363 |
-
|
364 |
-
# Map the values to the 'Average Performance' column based on index
|
365 |
-
five_shot_df["Average Performance"] = five_shot_df.index.map(updated_performance_int)
|
366 |
-
|
367 |
-
return five_shot_df[['T', 'Model', 'Model: Domain', 'Model: Accessibility', 'Model: Size Range', 'Size (B)', 'Average Performance'] + filtered_cols]
|
368 |
-
|
369 |
-
def five_shot_filter_task_type(task_type_choice):
|
370 |
-
# Update the Global store for the currently selected filters
|
371 |
-
five_shot_currently_selected_filters["Task Type"] = task_type_choice
|
372 |
-
|
373 |
-
if isEmpty(five_shot_currently_selected_filters):
|
374 |
-
five_shot_df["Average Performance"] = original_five_shot_avg_perf
|
375 |
-
return five_shot_df
|
376 |
-
|
377 |
-
filtered_cols = get_filtered_columns(five_shot_currently_selected_filters)
|
378 |
-
|
379 |
-
updated_performance = five_shot_update_average_performance(filtered_cols)
|
380 |
-
|
381 |
-
# Convert dictionary keys to integers to match the DataFrame index
|
382 |
-
updated_performance_int = {int(k): v for k, v in updated_performance.items()}
|
383 |
-
|
384 |
-
# Map the values to the 'Average Performance' column based on index
|
385 |
-
five_shot_df["Average Performance"] = five_shot_df.index.map(updated_performance_int)
|
386 |
-
|
387 |
-
return five_shot_df[['T', 'Model', 'Model: Domain', 'Model: Accessibility', 'Model: Size Range', 'Size (B)', 'Average Performance'] + filtered_cols]
|
388 |
-
|
389 |
-
def five_shot_filter_clinical_context(clinical_context_choice):
|
390 |
-
# Update the Global store for the currently selected filters
|
391 |
-
five_shot_currently_selected_filters["Clinical Context"] = clinical_context_choice
|
392 |
-
|
393 |
-
if isEmpty(five_shot_currently_selected_filters):
|
394 |
-
five_shot_df["Average Performance"] = original_five_shot_avg_perf
|
395 |
-
return five_shot_df
|
396 |
-
|
397 |
-
filtered_cols = get_filtered_columns(five_shot_currently_selected_filters)
|
398 |
-
|
399 |
-
updated_performance = five_shot_update_average_performance(filtered_cols)
|
400 |
-
|
401 |
-
# Convert dictionary keys to integers to match the DataFrame index
|
402 |
-
updated_performance_int = {int(k): v for k, v in updated_performance.items()}
|
403 |
-
|
404 |
-
# Map the values to the 'Average Performance' column based on index
|
405 |
-
five_shot_df["Average Performance"] = five_shot_df.index.map(updated_performance_int)
|
406 |
-
|
407 |
-
return five_shot_df[['T', 'Model', 'Model: Domain', 'Model: Accessibility', 'Model: Size Range', 'Size (B)', 'Average Performance'] + filtered_cols]
|
408 |
-
|
409 |
-
def five_shot_filter_applications(applications_choice):
|
410 |
-
# Update the Global store for the currently selected filters
|
411 |
-
five_shot_currently_selected_filters["Applications"] = applications_choice
|
412 |
-
|
413 |
-
if isEmpty(five_shot_currently_selected_filters):
|
414 |
-
five_shot_df["Average Performance"] = original_five_shot_avg_perf
|
415 |
-
return five_shot_df
|
416 |
-
|
417 |
-
filtered_cols = get_filtered_columns(five_shot_currently_selected_filters)
|
418 |
-
|
419 |
-
updated_performance = five_shot_update_average_performance(filtered_cols)
|
420 |
-
|
421 |
-
# Convert dictionary keys to integers to match the DataFrame index
|
422 |
-
updated_performance_int = {int(k): v for k, v in updated_performance.items()}
|
423 |
-
|
424 |
-
# Map the values to the 'Average Performance' column based on index
|
425 |
-
five_shot_df["Average Performance"] = five_shot_df.index.map(updated_performance_int)
|
426 |
-
|
427 |
-
return five_shot_df[['T', 'Model', 'Model: Domain', 'Model: Accessibility', 'Model: Size Range', 'Size (B)', 'Average Performance'] + filtered_cols]
|
428 |
-
|
429 |
-
def five_shot_filter_stage_options(stage_choice):
|
430 |
-
# Update the Global store for the currently selected filters
|
431 |
-
five_shot_currently_selected_filters["Clinical Stage"] = stage_choice
|
432 |
-
|
433 |
-
if isEmpty(five_shot_currently_selected_filters):
|
434 |
-
five_shot_df["Average Performance"] = original_five_shot_avg_perf
|
435 |
-
return five_shot_df
|
436 |
-
|
437 |
-
filtered_cols = get_filtered_columns(five_shot_currently_selected_filters)
|
438 |
-
|
439 |
-
updated_performance = five_shot_update_average_performance(filtered_cols)
|
440 |
-
|
441 |
-
# Convert dictionary keys to integers to match the DataFrame index
|
442 |
-
updated_performance_int = {int(k): v for k, v in updated_performance.items()}
|
443 |
-
|
444 |
-
# Map the values to the 'Average Performance' column based on index
|
445 |
-
five_shot_df["Average Performance"] = five_shot_df.index.map(updated_performance_int)
|
446 |
-
|
447 |
-
return five_shot_df[['T', 'Model', 'Model: Domain', 'Model: Accessibility', 'Model: Size Range', 'Size (B)', 'Average Performance'] + filtered_cols]
|
448 |
-
|
449 |
-
def five_shot_filter_data_access(data_access_choice):
|
450 |
-
# Update the Global store for the currently selected filters
|
451 |
-
five_shot_currently_selected_filters["Data Access"] = data_access_choice
|
452 |
-
|
453 |
-
if isEmpty(five_shot_currently_selected_filters):
|
454 |
-
five_shot_df["Average Performance"] = original_five_shot_avg_perf
|
455 |
-
return five_shot_df
|
456 |
-
|
457 |
-
filtered_cols = get_filtered_columns(five_shot_currently_selected_filters)
|
458 |
-
|
459 |
-
updated_performance = five_shot_update_average_performance(filtered_cols)
|
460 |
-
|
461 |
-
# Convert dictionary keys to integers to match the DataFrame index
|
462 |
-
updated_performance_int = {int(k): v for k, v in updated_performance.items()}
|
463 |
-
|
464 |
-
# Map the values to the 'Average Performance' column based on index
|
465 |
-
five_shot_df["Average Performance"] = five_shot_df.index.map(updated_performance_int)
|
466 |
-
|
467 |
-
return five_shot_df[['T', 'Model', 'Model: Domain', 'Model: Accessibility', 'Model: Size Range', 'Size (B)', 'Average Performance'] + filtered_cols]
|
468 |
-
|
469 |
-
|
470 |
-
def five_shot_update_average_performance(selected_columns):
|
471 |
-
"""
|
472 |
-
When a user clicks filters to filter certain tasks, the average performance
|
473 |
-
of the model should update. This function takes uses the updated filtered columns
|
474 |
-
and calculates the average performances of only those columns. It then updates
|
475 |
-
the leaderboard accordingly.
|
476 |
-
"""
|
477 |
-
updated_average_performance = {}
|
478 |
-
|
479 |
-
for i in range(n_models):
|
480 |
-
performance = 0
|
481 |
-
|
482 |
-
num_tasks = 0
|
483 |
-
for task in selected_columns:
|
484 |
-
num_tasks += 1
|
485 |
-
performance += float(five_shot_leaderboard_json[task][str(i)])
|
486 |
-
|
487 |
-
if num_tasks == 0:
|
488 |
-
num_tasks = 1
|
489 |
-
|
490 |
-
updated_average_performance[f"{i}"] = float(round(performance / num_tasks, 2))
|
491 |
-
|
492 |
-
return updated_average_performance
|
493 |
-
|
494 |
-
|
495 |
-
####################################################################################################
|
496 |
-
###### Zero Shot Filters
|
497 |
-
####################################################################################################
|
498 |
-
|
499 |
-
|
500 |
-
def zero_shot_filter_language(language_choice):
|
501 |
-
# Update the Global store for the currently selected filters
|
502 |
-
zero_shot_currently_selected_filters["Language"] = language_choice
|
503 |
-
|
504 |
-
if isEmpty(zero_shot_currently_selected_filters):
|
505 |
-
zero_shot_df["Average Performance"] = original_zero_shot_avg_perf
|
506 |
-
return zero_shot_df
|
507 |
-
|
508 |
-
filtered_cols = get_filtered_columns(zero_shot_currently_selected_filters)
|
509 |
-
|
510 |
-
updated_performance = zero_shot_update_average_performance(filtered_cols)
|
511 |
-
|
512 |
-
# Convert dictionary keys to integers to match the DataFrame index
|
513 |
-
updated_performance_int = {int(k): v for k, v in updated_performance.items()}
|
514 |
-
|
515 |
-
# Map the values to the 'Average Performance' column based on index
|
516 |
-
zero_shot_df["Average Performance"] = zero_shot_df.index.map(updated_performance_int)
|
517 |
-
|
518 |
-
return zero_shot_df[['T', 'Model', 'Model: Domain', 'Model: Accessibility', 'Model: Size Range', 'Size (B)', 'Average Performance'] + filtered_cols]
|
519 |
-
|
520 |
-
def zero_shot_filter_task_type(task_type_choice):
|
521 |
-
# Update the Global store for the currently selected filters
|
522 |
-
zero_shot_currently_selected_filters["Task Type"] = task_type_choice
|
523 |
-
|
524 |
-
if isEmpty(zero_shot_currently_selected_filters):
|
525 |
-
zero_shot_df["Average Performance"] = original_zero_shot_avg_perf
|
526 |
-
return zero_shot_df
|
527 |
-
|
528 |
-
filtered_cols = get_filtered_columns(zero_shot_currently_selected_filters)
|
529 |
-
|
530 |
-
updated_performance = zero_shot_update_average_performance(filtered_cols)
|
531 |
-
|
532 |
-
# Convert dictionary keys to integers to match the DataFrame index
|
533 |
-
updated_performance_int = {int(k): v for k, v in updated_performance.items()}
|
534 |
-
|
535 |
-
# Map the values to the 'Average Performance' column based on index
|
536 |
-
zero_shot_df["Average Performance"] = zero_shot_df.index.map(updated_performance_int)
|
537 |
-
|
538 |
-
return zero_shot_df[['T', 'Model', 'Model: Domain', 'Model: Accessibility', 'Model: Size Range', 'Size (B)', 'Average Performance'] + filtered_cols]
|
539 |
-
|
540 |
-
def zero_shot_filter_clinical_context(clinical_context_choice):
|
541 |
-
# Update the Global store for the currently selected filters
|
542 |
-
zero_shot_currently_selected_filters["Clinical Context"] = clinical_context_choice
|
543 |
-
|
544 |
-
if isEmpty(zero_shot_currently_selected_filters):
|
545 |
-
zero_shot_df["Average Performance"] = original_zero_shot_avg_perf
|
546 |
-
return zero_shot_df
|
547 |
-
|
548 |
-
filtered_cols = get_filtered_columns(zero_shot_currently_selected_filters)
|
549 |
-
|
550 |
-
updated_performance = zero_shot_update_average_performance(filtered_cols)
|
551 |
-
|
552 |
-
# Convert dictionary keys to integers to match the DataFrame index
|
553 |
-
updated_performance_int = {int(k): v for k, v in updated_performance.items()}
|
554 |
-
|
555 |
-
# Map the values to the 'Average Performance' column based on index
|
556 |
-
zero_shot_df["Average Performance"] = zero_shot_df.index.map(updated_performance_int)
|
557 |
-
|
558 |
-
return zero_shot_df[['T', 'Model', 'Model: Domain', 'Model: Accessibility', 'Model: Size Range', 'Size (B)', 'Average Performance'] + filtered_cols]
|
559 |
-
|
560 |
-
def zero_shot_filter_applications(applications_choice):
|
561 |
-
# Update the Global store for the currently selected filters
|
562 |
-
zero_shot_currently_selected_filters["Applications"] = applications_choice
|
563 |
-
|
564 |
-
if isEmpty(zero_shot_currently_selected_filters):
|
565 |
-
zero_shot_df["Average Performance"] = original_zero_shot_avg_perf
|
566 |
-
return zero_shot_df
|
567 |
-
|
568 |
-
filtered_cols = get_filtered_columns(zero_shot_currently_selected_filters)
|
569 |
-
|
570 |
-
updated_performance = zero_shot_update_average_performance(filtered_cols)
|
571 |
-
|
572 |
-
# Convert dictionary keys to integers to match the DataFrame index
|
573 |
-
updated_performance_int = {int(k): v for k, v in updated_performance.items()}
|
574 |
-
|
575 |
-
# Map the values to the 'Average Performance' column based on index
|
576 |
-
zero_shot_df["Average Performance"] = zero_shot_df.index.map(updated_performance_int)
|
577 |
-
|
578 |
-
return zero_shot_df[['T', 'Model', 'Model: Domain', 'Model: Accessibility', 'Model: Size Range', 'Size (B)', 'Average Performance'] + filtered_cols]
|
579 |
-
|
580 |
-
def zero_shot_filter_stage_options(stage_choice):
|
581 |
-
# Update the Global store for the currently selected filters
|
582 |
-
zero_shot_currently_selected_filters["Clinical Stage"] = stage_choice
|
583 |
-
|
584 |
-
if isEmpty(zero_shot_currently_selected_filters):
|
585 |
-
zero_shot_df["Average Performance"] = original_zero_shot_avg_perf
|
586 |
-
return zero_shot_df
|
587 |
-
|
588 |
-
filtered_cols = get_filtered_columns(zero_shot_currently_selected_filters)
|
589 |
-
|
590 |
-
updated_performance = zero_shot_update_average_performance(filtered_cols)
|
591 |
-
|
592 |
-
# Convert dictionary keys to integers to match the DataFrame index
|
593 |
-
updated_performance_int = {int(k): v for k, v in updated_performance.items()}
|
594 |
-
|
595 |
-
# Map the values to the 'Average Performance' column based on index
|
596 |
-
zero_shot_df["Average Performance"] = zero_shot_df.index.map(updated_performance_int)
|
597 |
-
|
598 |
-
return zero_shot_df[['T', 'Model', 'Model: Domain', 'Model: Accessibility', 'Model: Size Range', 'Size (B)', 'Average Performance'] + filtered_cols]
|
599 |
-
|
600 |
-
def zero_shot_filter_data_access(data_access_choice):
|
601 |
-
# Update the Global store for the currently selected filters
|
602 |
-
zero_shot_currently_selected_filters["Data Access"] = data_access_choice
|
603 |
-
|
604 |
-
if isEmpty(zero_shot_currently_selected_filters):
|
605 |
-
zero_shot_df["Average Performance"] = original_zero_shot_avg_perf
|
606 |
-
return zero_shot_df
|
607 |
-
|
608 |
-
filtered_cols = get_filtered_columns(zero_shot_currently_selected_filters)
|
609 |
-
|
610 |
-
updated_performance = zero_shot_update_average_performance(filtered_cols)
|
611 |
-
|
612 |
-
# Convert dictionary keys to integers to match the DataFrame index
|
613 |
-
updated_performance_int = {int(k): v for k, v in updated_performance.items()}
|
614 |
-
|
615 |
-
# Map the values to the 'Average Performance' column based on index
|
616 |
-
zero_shot_df["Average Performance"] = zero_shot_df.index.map(updated_performance_int)
|
617 |
-
|
618 |
-
return zero_shot_df[['T', 'Model', 'Model: Domain', 'Model: Accessibility', 'Model: Size Range', 'Size (B)', 'Average Performance'] + filtered_cols]
|
619 |
-
|
620 |
-
def zero_shot_update_average_performance(selected_columns):
|
621 |
-
"""
|
622 |
-
When a user clicks filters to filter certain tasks, the average performance
|
623 |
-
of the model should update. This function takes uses the updated filtered columns
|
624 |
-
and calculates the average performances of only those columns. It then updates
|
625 |
-
the leaderboard accordingly.
|
626 |
-
"""
|
627 |
-
updated_average_performance = {}
|
628 |
-
|
629 |
-
for i in range(n_models):
|
630 |
-
performance = 0
|
631 |
-
|
632 |
-
num_tasks = 0
|
633 |
-
for task in selected_columns:
|
634 |
-
num_tasks += 1
|
635 |
-
performance += float(zero_shot_leaderboard_json[task][str(i)])
|
636 |
-
|
637 |
-
if num_tasks == 0:
|
638 |
-
num_tasks = 1
|
639 |
-
|
640 |
-
updated_average_performance[f"{i}"] = float(round(performance / num_tasks, 2))
|
641 |
-
|
642 |
-
return updated_average_performance
|
643 |
-
|
644 |
-
|
645 |
-
def postprocess(self, value: pd.DataFrame) -> DataframeData:
|
646 |
-
# Ensure that the "Average Performance" column exists
|
647 |
-
if "Average Performance" in value.columns:
|
648 |
-
# Sort the DataFrame by the "average performance" column in descending order
|
649 |
-
value = value.sort_values(by="Average Performance", ascending=False)
|
650 |
-
|
651 |
-
return DataframeData(
|
652 |
-
headers=list(value.columns), # type: ignore
|
653 |
-
data=value.to_dict(orient="split")["data"], # type: ignore
|
654 |
-
)
|
655 |
-
|
656 |
-
if value is None:
|
657 |
-
return self.postprocess(pd.DataFrame({"column 1": []}))
|
658 |
-
if isinstance(value, (str, pd.DataFrame)):
|
659 |
-
if isinstance(value, str):
|
660 |
-
value = pd.read_csv(value) # type: ignore
|
661 |
-
if len(value) == 0:
|
662 |
-
return DataframeData(
|
663 |
-
headers=list(value.columns), # type: ignore
|
664 |
-
data=[[]], # type: ignore
|
665 |
-
)
|
666 |
-
return DataframeData(
|
667 |
-
headers=list(value.columns), # type: ignore
|
668 |
-
data=value.to_dict(orient="split")["data"], # type: ignore
|
669 |
-
)
|
670 |
-
elif isinstance(value, Styler):
|
671 |
-
if semantic_version.Version(pd.__version__) < semantic_version.Version(
|
672 |
-
"1.5.0"
|
673 |
-
):
|
674 |
-
raise ValueError(
|
675 |
-
"Styler objects are only supported in pandas version 1.5.0 or higher. Please try: `pip install --upgrade pandas` to use this feature."
|
676 |
-
)
|
677 |
-
if self.interactive:
|
678 |
-
warnings.warn(
|
679 |
-
"Cannot display Styler object in interactive mode. Will display as a regular pandas dataframe instead."
|
680 |
-
)
|
681 |
-
df: pd.DataFrame = value.data # type: ignore
|
682 |
-
if len(df) == 0:
|
683 |
-
return DataframeData(
|
684 |
-
headers=list(df.columns),
|
685 |
-
data=[[]],
|
686 |
-
metadata=self.__extract_metadata(value), # type: ignore
|
687 |
-
)
|
688 |
-
return DataframeData(
|
689 |
-
headers=list(df.columns),
|
690 |
-
data=df.to_dict(orient="split")["data"], # type: ignore
|
691 |
-
metadata=self.__extract_metadata(value), # type: ignore
|
692 |
-
)
|
693 |
-
|
694 |
-
# Models are sorted in order of decreasing average performance (best performance at the top!)
|
695 |
-
Leaderboard.postprocess = postprocess
|
696 |
-
|
697 |
-
|
698 |
-
####################################################################################################
|
699 |
-
###### Leaderboard
|
700 |
-
####################################################################################################
|
701 |
-
|
702 |
-
with gr.Blocks() as app:
|
703 |
-
gr.Markdown("# BRIDGE (Benchmarking Large Language Models for Understanding Real-world Clinical Practice Text)")
|
704 |
-
|
705 |
-
with gr.Tabs():
|
706 |
-
with gr.Tab("README"):
|
707 |
-
# gr.Markdown((Path(__file__).parent / "docs.md").read_text())
|
708 |
-
html_content = (Path(__file__).parent / "docs.md").read_text()
|
709 |
-
gr.HTML(html_content)
|
710 |
-
|
711 |
-
with gr.Tab("Zero-Shot"):
|
712 |
-
leaderboard = Leaderboard(
|
713 |
-
value=zero_shot_df,
|
714 |
-
select_columns = None,
|
715 |
-
search_columns=SearchColumns(primary_column = "Model", secondary_columns = "",
|
716 |
-
placeholder="Search by Model Name",
|
717 |
-
label="Model Search"),
|
718 |
-
hide_columns=["Model: Size Range", "Model: Accessibility"],
|
719 |
-
filter_columns=["Model: Domain", "Model: Size Range", "Model: Accessibility"],
|
720 |
-
datatype=config.TYPES,
|
721 |
-
)
|
722 |
-
|
723 |
-
# Language Filter
|
724 |
-
all_languages = ['English', 'Spanish',
|
725 |
-
'Chinese', 'Norwegian',
|
726 |
-
'Russian', 'Portuguese',
|
727 |
-
'German', 'Japanese', 'French']
|
728 |
-
|
729 |
-
language_options = gr.CheckboxGroup(all_languages, label="Filter Task: Language")
|
730 |
-
|
731 |
-
# Task Type Filter
|
732 |
-
all_task_types = ['Question Answering', 'Text Classification', 'Named Entity Recognition',
|
733 |
-
'Normalization and Coding', 'Natural Language Inference', 'Summarization',
|
734 |
-
'Event Extraction', 'Semantic Similarity']
|
735 |
-
|
736 |
-
|
737 |
-
task_type_options = gr.CheckboxGroup(all_task_types, label="Filter Task: Task Type")
|
738 |
-
|
739 |
-
all_clinical_contexts = ['Neurology', 'Oncology', 'Radiology', 'Pulmonology',
|
740 |
-
'Cardiology', 'Dermatology', 'Critical Care', 'Nephrology',
|
741 |
-
'General', 'Endocrinology', 'Pediatrics', 'Pharmacology',
|
742 |
-
'Gastroenterology', 'Psychology']
|
743 |
-
|
744 |
-
cc_options = gr.CheckboxGroup(all_clinical_contexts, label="Filter Task: Clinical Context")
|
745 |
-
|
746 |
-
# Applications Filter
|
747 |
-
all_applications = ['Procudure information', 'Concept standarization',
|
748 |
-
'Specialist recommendation', 'Negation identification',
|
749 |
-
'Clinical trial matching', 'Consultation summarization',
|
750 |
-
'Semantic relation', 'Post-discharge patient management',
|
751 |
-
'De-identification', 'Billing & Coding', 'Phenotyping',
|
752 |
-
'Data organization', 'Temporal & Causality relation',
|
753 |
-
'Summarization', 'Screen & Consultation', 'Diagnosis',
|
754 |
-
'ADE & Incidents', 'Risk factor extraction', 'Prognosis',
|
755 |
-
'Medication information']
|
756 |
-
|
757 |
-
|
758 |
-
application_options = gr.CheckboxGroup(all_applications, label="Filter Task: Clinical Application")
|
759 |
-
|
760 |
-
# Clinical Stage Filter
|
761 |
-
all_stages = ['Treatment and Intervention', 'Triage and Referral',
|
762 |
-
'Initial Assessment', 'Discharge and Administration',
|
763 |
-
'Research', 'Diagnosis and Prognosis']
|
764 |
-
|
765 |
-
stage_options = gr.CheckboxGroup(all_stages, label="Filter Task: Clinical Stage")
|
766 |
-
|
767 |
-
# Data Access Filter
|
768 |
-
all_data_access = ['Open Access', 'Regulated']
|
769 |
-
|
770 |
-
da_options = gr.CheckboxGroup(all_data_access, label="Filter Task: Data Access")
|
771 |
-
|
772 |
-
|
773 |
-
language_options.change(fn=zero_shot_filter_language, inputs=language_options, outputs=leaderboard)
|
774 |
-
task_type_options.change(fn=zero_shot_filter_task_type, inputs=task_type_options, outputs=leaderboard)
|
775 |
-
cc_options.change(fn=zero_shot_filter_clinical_context, inputs=cc_options, outputs=leaderboard)
|
776 |
-
application_options.change(fn=zero_shot_filter_applications, inputs=application_options, outputs=leaderboard)
|
777 |
-
da_options.change(fn=zero_shot_filter_data_access, inputs=da_options, outputs=leaderboard)
|
778 |
-
stage_options.change(fn=zero_shot_filter_stage_options, inputs=stage_options, outputs=leaderboard)
|
779 |
-
|
780 |
-
|
781 |
-
with gr.Tab("Few-Shot"):
|
782 |
-
leaderboard = Leaderboard(
|
783 |
-
value=five_shot_df,
|
784 |
-
select_columns = None,
|
785 |
-
search_columns=SearchColumns(primary_column = "Model", secondary_columns = "",
|
786 |
-
placeholder="Search by Model Name",
|
787 |
-
label="Model Search"),
|
788 |
-
hide_columns=["Model: Size Range", "Model: Accessibility"],
|
789 |
-
filter_columns=["Model: Domain", "Model: Size Range", "Model: Accessibility"],
|
790 |
-
datatype=config.TYPES,
|
791 |
-
)
|
792 |
-
|
793 |
-
# Language Filter
|
794 |
-
all_languages = ['English', 'Spanish',
|
795 |
-
'Chinese', 'Norwegian',
|
796 |
-
'Russian', 'Portuguese',
|
797 |
-
'German', 'Japanese', 'French']
|
798 |
-
|
799 |
-
language_options = gr.CheckboxGroup(all_languages, label="Filter Task: Language")
|
800 |
-
|
801 |
-
# Task Type Filter
|
802 |
-
all_task_types = ['Question Answering', 'Text Classification', 'Named Entity Recognition',
|
803 |
-
'Normalization and Coding', 'Natural Language Inference', 'Summarization',
|
804 |
-
'Event Extraction', 'Semantic Similarity']
|
805 |
-
|
806 |
-
task_type_options = gr.CheckboxGroup(all_task_types, label="Filter Task: Task Type")
|
807 |
-
|
808 |
-
|
809 |
-
# Clinical Context Filter
|
810 |
-
all_clinical_contexts = ['Neurology', 'Oncology', 'Radiology', 'Pulmonology',
|
811 |
-
'Cardiology', 'Dermatology', 'Critical Care', 'Nephrology',
|
812 |
-
'General', 'Endocrinology', 'Pediatrics', 'Pharmacology',
|
813 |
-
'Gastroenterology', 'Psychology']
|
814 |
-
|
815 |
-
cc_options = gr.CheckboxGroup(all_clinical_contexts, label="Filter Task: Clinical Context")
|
816 |
-
|
817 |
-
# Applications Filter
|
818 |
-
all_applications = ['Procudure information', 'Concept standarization',
|
819 |
-
'Specialist recommendation', 'Negation identification',
|
820 |
-
'Clinical trial matching', 'Consultation summarization',
|
821 |
-
'Semantic relation', 'Post-discharge patient management',
|
822 |
-
'De-identification', 'Billing & Coding', 'Phenotyping',
|
823 |
-
'Data organization', 'Temporal & Causality relation',
|
824 |
-
'Summarization', 'Screen & Consultation', 'Diagnosis',
|
825 |
-
'ADE & Incidents', 'Risk factor extraction', 'Prognosis',
|
826 |
-
'Medication information']
|
827 |
-
|
828 |
-
application_options = gr.CheckboxGroup(all_applications, label="Filter Task: Clinical Application")
|
829 |
-
|
830 |
-
# Clinical Stage Filter
|
831 |
-
all_stages = ['Treatment and Intervention', 'Triage and Referral',
|
832 |
-
'Initial Assessment', 'Discharge and Administration',
|
833 |
-
'Research', 'Diagnosis and Prognosis']
|
834 |
-
|
835 |
-
stage_options = gr.CheckboxGroup(all_stages, label="Filter Task: Clinical Stage")
|
836 |
-
|
837 |
-
# Data Access Filter
|
838 |
-
all_data_access = ['Open Access', 'Regulated']
|
839 |
-
|
840 |
-
da_options = gr.CheckboxGroup(all_data_access, label="Filter Task: Data Access")
|
841 |
-
|
842 |
-
language_options.change(fn=five_shot_filter_language, inputs=language_options, outputs=leaderboard)
|
843 |
-
task_type_options.change(fn=five_shot_filter_task_type, inputs=task_type_options, outputs=leaderboard)
|
844 |
-
cc_options.change(fn=five_shot_filter_clinical_context, inputs=cc_options, outputs=leaderboard)
|
845 |
-
application_options.change(fn=five_shot_filter_applications, inputs=application_options, outputs=leaderboard)
|
846 |
-
da_options.change(fn=five_shot_filter_data_access, inputs=da_options, outputs=leaderboard)
|
847 |
-
stage_options.change(fn=five_shot_filter_stage_options, inputs=stage_options, outputs=leaderboard)
|
848 |
-
|
849 |
-
|
850 |
-
with gr.Tab("CoT"):
|
851 |
-
leaderboard = Leaderboard(
|
852 |
-
value=cot_df,
|
853 |
-
select_columns = None,
|
854 |
-
search_columns=SearchColumns(primary_column = "Model", secondary_columns = "",
|
855 |
-
placeholder="Search by Model Name",
|
856 |
-
label="Model Search"),
|
857 |
-
hide_columns=["Model: Size Range", "Model: Accessibility"],
|
858 |
-
filter_columns=["Model: Domain", "Model: Size Range", "Model: Accessibility"],
|
859 |
-
datatype=config.TYPES,
|
860 |
-
)
|
861 |
-
|
862 |
-
# Language Filter
|
863 |
-
all_languages = ['English', 'Spanish',
|
864 |
-
'Chinese', 'Norwegian',
|
865 |
-
'Russian', 'Portuguese',
|
866 |
-
'German', 'Japanese', 'French']
|
867 |
-
|
868 |
-
language_options = gr.CheckboxGroup(all_languages, label="Filter Task: Language")
|
869 |
-
|
870 |
-
# Task Type Filter
|
871 |
-
all_task_types = ['Question Answering', 'Text Classification', 'Named Entity Recognition',
|
872 |
-
'Normalization and Coding', 'Natural Language Inference', 'Summarization',
|
873 |
-
'Event Extraction', 'Semantic Similarity']
|
874 |
-
|
875 |
-
task_type_options = gr.CheckboxGroup(all_task_types, label="Filter Task: Task Type")
|
876 |
-
|
877 |
-
# Clinical Context Filter
|
878 |
-
all_clinical_contexts = ['Neurology', 'Oncology', 'Radiology', 'Pulmonology',
|
879 |
-
'Cardiology', 'Dermatology', 'Critical Care', 'Nephrology',
|
880 |
-
'General', 'Endocrinology', 'Pediatrics', 'Pharmacology',
|
881 |
-
'Gastroenterology', 'Psychology']
|
882 |
-
|
883 |
-
cc_options = gr.CheckboxGroup(all_clinical_contexts, label="Filter Task: Clinical Context")
|
884 |
-
|
885 |
-
# Applications Filter
|
886 |
-
all_applications = ['Procudure information', 'Concept standarization',
|
887 |
-
'Specialist recommendation', 'Negation identification',
|
888 |
-
'Clinical trial matching', 'Consultation summarization',
|
889 |
-
'Semantic relation', 'Post-discharge patient management',
|
890 |
-
'De-identification', 'Billing & Coding', 'Phenotyping',
|
891 |
-
'Data organization', 'Temporal & Causality relation',
|
892 |
-
'Summarization', 'Screen & Consultation', 'Diagnosis',
|
893 |
-
'ADE & Incidents', 'Risk factor extraction', 'Prognosis',
|
894 |
-
'Medication information']
|
895 |
-
|
896 |
-
application_options = gr.CheckboxGroup(all_applications, label="Filter Task: Clinical Application")
|
897 |
-
|
898 |
-
# Clinical Stage Filter
|
899 |
-
all_stages = ['Treatment and Intervention', 'Triage and Referral',
|
900 |
-
'Initial Assessment', 'Discharge and Administration',
|
901 |
-
'Research', 'Diagnosis and Prognosis']
|
902 |
-
|
903 |
-
stage_options = gr.CheckboxGroup(all_stages, label="Filter Task: Clinical Stage")
|
904 |
-
|
905 |
-
|
906 |
-
# Data Access Filter
|
907 |
-
all_data_access = ['Open Access', 'Regulated']
|
908 |
-
|
909 |
-
da_options = gr.CheckboxGroup(all_data_access, label="Filter Task: Data Access")
|
910 |
-
|
911 |
-
|
912 |
-
language_options.change(fn=cot_filter_language, inputs=language_options, outputs=leaderboard)
|
913 |
-
task_type_options.change(fn=cot_filter_task_type, inputs=task_type_options, outputs=leaderboard)
|
914 |
-
cc_options.change(fn=cot_filter_clinical_context, inputs=cc_options, outputs=leaderboard)
|
915 |
-
application_options.change(fn=cot_filter_applications, inputs=application_options, outputs=leaderboard)
|
916 |
-
da_options.change(fn=cot_filter_data_access, inputs=da_options, outputs=leaderboard)
|
917 |
-
|
918 |
-
stage_options.change(fn=cot_filter_stage_options, inputs=stage_options, outputs=leaderboard)
|
919 |
-
|
920 |
-
|
921 |
-
if __name__ == "__main__":
|
922 |
-
app.launch()
|
923 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|