Spaces:
Sleeping
Sleeping
File size: 2,628 Bytes
0471b47 e355996 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 |
import os
import requests
import gradio as gr
from llama_cpp import Llama
MODEL_URL = "https://cas-bridge.xethub.hf.co/xet-bridge-us/680f85f7f3cf2673404f897f/d6cd862a0b513dd35067121f0413e369b37aa9cacde526e31fc016c68ce0d305?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=cas%2F20250503%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Date=20250503T191219Z&X-Amz-Expires=3600&X-Amz-Signature=2721d6c78a7db9b4d9b0ed1452ce3017d82b3392a190ae72b3755d873bc6c3df&X-Amz-SignedHeaders=host&X-Xet-Cas-Uid=67e6d6e1648b9f55980fa892&response-content-disposition=attachment%3B+filename*%3DUTF-8%27%27Qwen3-4B-128K-Q4_K_M.gguf%3B+filename%3D%22Qwen3-4B-128K-Q4_K_M.gguf%22%3B&x-id=GetObject&Expires=1746303139&Policy=eyJTdGF0ZW1lbnQiOlt7IkNvbmRpdGlvbiI6eyJEYXRlTGVzc1RoYW4iOnsiQVdTOkVwb2NoVGltZSI6MTc0NjMwMzEzOX19LCJSZXNvdXJjZSI6Imh0dHBzOi8vY2FzLWJyaWRnZS54ZXRodWIuaGYuY28veGV0LWJyaWRnZS11cy82ODBmODVmN2YzY2YyNjczNDA0Zjg5N2YvZDZjZDg2MmEwYjUxM2RkMzUwNjcxMjFmMDQxM2UzNjliMzdhYTljYWNkZTUyNmUzMWZjMDE2YzY4Y2UwZDMwNSoifV19&Signature=lxo1PdbqSDERIivvWyQ88rq6oOx0DF5aefiy1LClNYXtBexSV476eNjAEl0wwE1nf7rW%7EcAIctjqzl%7ElVTEFSCosTEACuRrgqtGjyP94xL0xBFMDv1lqJ6E5UFokq0FTRNNd84Xt3GthKDMYanseX9kGpHBNpCwvlx-BRrNF6cbd2XWcCcmetP-NUrHtmoEHY89LVAFb72EXx7edlsOIMOWGzOYcgHI-IfuM2U4m%7Epquxo429CjrEbUi9xpQIQFVBvWHThIJN2LT5NqXpUpPyXswEJyuQDZ0sDTgBEh5gdHtwAWf0cF0i285VgitHIty8eYLEeYNu7J%7EqEDBu7RrYQ__&Key-Pair-Id=K2L8F4GPSG1IFC" # truncated for clarity
MODEL_PATH = "Qwen3-4B-128K-Q4_K_M.gguf"
# Download model if not already downloaded
if not os.path.exists(MODEL_PATH):
print("Downloading model...")
with requests.get(MODEL_URL, stream=True) as r:
r.raise_for_status()
with open(MODEL_PATH, 'wb') as f:
for chunk in r.iter_content(chunk_size=8192):
f.write(chunk)
print("Model downloaded.")
# Load the model
llm = Llama(
model_path=MODEL_PATH,
n_ctx=8192,
n_threads=4,
n_gpu_layers=20, # Adjust for HF GPU environment
chat_format="chatml"
)
def chat_interface(message, history):
if history is None:
history = []
chat_prompt = []
for user_msg, bot_msg in history:
chat_prompt.append({"role": "user", "content": user_msg})
chat_prompt.append({"role": "assistant", "content": bot_msg})
chat_prompt.append({"role": "user", "content": message})
response = llm.create_chat_completion(messages=chat_prompt, stream=False)
reply = response["choices"][0]["message"]["content"]
history.append((message, reply))
return reply, history
gr.ChatInterface(fn=chat_interface, title="Qwen3-4B Chat").launch()
|