Spaces:
Sleeping
Sleeping
| import os | |
| import requests | |
| from transformers import pipeline | |
| from flask import Flask, render_template, request, jsonify | |
| app = Flask(__name__) | |
| # Define model URL and local path | |
| MODEL_URL = "https://huggingface.co/unsloth/Qwen3-4B-128K-GGUF/resolve/main/Qwen3-4B-128K-UD-IQ1_M.gguf" | |
| MODEL_PATH = "Qwen3-4B-128K-UD-IQ1_M.gguf" | |
| # Function to download the model | |
| def download_model(): | |
| if not os.path.exists(MODEL_PATH): | |
| print("Downloading the model...") | |
| response = requests.get(MODEL_URL, stream=True) | |
| with open(MODEL_PATH, 'wb') as model_file: | |
| for chunk in response.iter_content(chunk_size=128): | |
| model_file.write(chunk) | |
| print("Model downloaded successfully.") | |
| # Load the model with Hugging Face Transformers pipeline | |
| def load_model(): | |
| download_model() | |
| model = pipeline("text-generation", model=MODEL_PATH) | |
| return model | |
| # Global model object | |
| model = load_model() | |
| def index(): | |
| return render_template('index.html') | |
| def generate(): | |
| user_input = request.form['message'] | |
| response = model(user_input, max_length=100) | |
| return jsonify({"response": response[0]['generated_text']}) | |
| if __name__ == '__main__': | |
| app.run(debug=True) | |