File size: 7,202 Bytes
8115389
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
import os
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
import logging

logger = logging.getLogger(__name__)

class ModelConfig:
    """Configuration for different LLM models optimized for Hugging Face Spaces"""
    
    MODELS = {
        "dialogpt-medium": {
            "name": "microsoft/DialoGPT-medium",
            "description": "Conversational AI model, good for chat",
            "max_length": 512,
            "memory_usage": "medium",
            "recommended_for": "chat, conversation"
        },
        "dialogpt-small": {
            "name": "microsoft/DialoGPT-small", 
            "description": "Smaller conversational model, faster inference",
            "max_length": 256,
            "memory_usage": "low",
            "recommended_for": "quick responses, limited resources"
        },
        "gpt2": {
            "name": "gpt2",
            "description": "General purpose text generation",
            "max_length": 1024,
            "memory_usage": "medium",
            "recommended_for": "text generation, creative writing"
        },
        "distilgpt2": {
            "name": "distilgpt2",
            "description": "Distilled GPT-2, faster and smaller",
            "max_length": 512,
            "memory_usage": "low", 
            "recommended_for": "fast inference, resource constrained"
        },
        "flan-t5-small": {
            "name": "google/flan-t5-small",
            "description": "Instruction-tuned T5 model",
            "max_length": 512,
            "memory_usage": "low",
            "recommended_for": "instruction following, Q&A"
        }
    }
    
    @classmethod
    def get_model_info(cls, model_key: str = None):
        """Get information about available models"""
        if model_key:
            return cls.MODELS.get(model_key)
        return cls.MODELS
    
    @classmethod
    def get_recommended_model(cls, use_case: str = "general"):
        """Get recommended model based on use case"""
        recommendations = {
            "chat": "dialogpt-medium",
            "fast": "distilgpt2", 
            "general": "gpt2",
            "qa": "flan-t5-small",
            "low_memory": "dialogpt-small"
        }
        return recommendations.get(use_case, "dialogpt-medium")

class ModelManager:
    """Manages model loading and inference"""
    
    def __init__(self, model_name: str = None):
        self.model_name = model_name or os.getenv("MODEL_NAME", "microsoft/DialoGPT-medium")
        self.model = None
        self.tokenizer = None
        self.pipeline = None
        self.device = "cuda" if torch.cuda.is_available() else "cpu"
        self.loaded = False
        
    def load_model(self):
        """Load the specified model"""
        try:
            logger.info(f"Loading model: {self.model_name}")
            logger.info(f"Using device: {self.device}")
            
            # Load tokenizer
            self.tokenizer = AutoTokenizer.from_pretrained(
                self.model_name,
                padding_side="left"
            )
            
            # Add padding token if it doesn't exist
            if self.tokenizer.pad_token is None:
                self.tokenizer.pad_token = self.tokenizer.eos_token
            
            # Load model with optimizations
            model_kwargs = {
                "low_cpu_mem_usage": True,
                "torch_dtype": torch.float16 if self.device == "cuda" else torch.float32,
            }
            
            if self.device == "cuda":
                model_kwargs["device_map"] = "auto"
            
            self.model = AutoModelForCausalLM.from_pretrained(
                self.model_name,
                **model_kwargs
            )
            
            # Move to device if not using device_map
            if self.device == "cpu":
                self.model = self.model.to(self.device)
            
            # Create pipeline
            self.pipeline = pipeline(
                "text-generation",
                model=self.model,
                tokenizer=self.tokenizer,
                device=0 if self.device == "cuda" else -1,
                return_full_text=False
            )
            
            self.loaded = True
            logger.info("Model loaded successfully!")
            
        except Exception as e:
            logger.error(f"Error loading model: {str(e)}")
            raise e
    
    def generate_response(self, 
                         prompt: str, 
                         max_length: int = 100,
                         temperature: float = 0.7,
                         top_p: float = 0.9,
                         do_sample: bool = True) -> str:
        """Generate response using the loaded model"""
        
        if not self.loaded:
            raise RuntimeError("Model not loaded. Call load_model() first.")
        
        try:
            # Generate response
            outputs = self.pipeline(
                prompt,
                max_new_tokens=max_length,
                temperature=temperature,
                top_p=top_p,
                do_sample=do_sample,
                pad_token_id=self.tokenizer.eos_token_id,
                eos_token_id=self.tokenizer.eos_token_id,
                truncation=True
            )
            
            # Extract generated text
            if outputs and len(outputs) > 0:
                generated_text = outputs[0]['generated_text']
                return generated_text.strip()
            else:
                return "Sorry, I couldn't generate a response."
                
        except Exception as e:
            logger.error(f"Error generating response: {str(e)}")
            raise e
    
    def get_model_info(self):
        """Get information about the loaded model"""
        return {
            "model_name": self.model_name,
            "device": self.device,
            "loaded": self.loaded,
            "tokenizer_vocab_size": len(self.tokenizer) if self.tokenizer else None,
            "model_parameters": sum(p.numel() for p in self.model.parameters()) if self.model else None
        }
    
    def unload_model(self):
        """Unload the model to free memory"""
        if self.model:
            del self.model
            self.model = None
        if self.tokenizer:
            del self.tokenizer
            self.tokenizer = None
        if self.pipeline:
            del self.pipeline
            self.pipeline = None
        
        # Clear CUDA cache if using GPU
        if torch.cuda.is_available():
            torch.cuda.empty_cache()
        
        self.loaded = False
        logger.info("Model unloaded successfully")

# Global model manager instance
model_manager = None

def get_model_manager(model_name: str = None) -> ModelManager:
    """Get or create the global model manager instance"""
    global model_manager
    if model_manager is None:
        model_manager = ModelManager(model_name)
    return model_manager

def initialize_model(model_name: str = None):
    """Initialize and load the model"""
    manager = get_model_manager(model_name)
    if not manager.loaded:
        manager.load_model()
    return manager