llm-ai-agent / app_simple.py
Yadav122's picture
Fix: Simplified app with better error handling
8aea355 verified
import os
import logging
from typing import Optional
from datetime import datetime
from fastapi import FastAPI, HTTPException, Depends, Security, status
from fastapi.security import HTTPBearer, HTTPAuthorizationCredentials
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel, Field
import uvicorn
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Initialize FastAPI app
app = FastAPI(
title="LLM AI Agent API",
description="Secure AI Agent API with Local LLM deployment",
version="1.0.0"
)
# CORS middleware
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# Security
security = HTTPBearer()
# Configuration
API_KEYS = {
os.getenv("API_KEY_1", "27Eud5J73j6SqPQAT2ioV-CtiCg-p0WNqq6I4U0Ig6E"): "user1",
os.getenv("API_KEY_2", "QbzG2CqHU1Nn6F1EogZ1d3dp8ilRTMJQBwTJDQBzS-U"): "user2",
}
# Global variables for model
model = None
tokenizer = None
model_loaded = False
# Request/Response models
class ChatRequest(BaseModel):
message: str = Field(..., min_length=1, max_length=1000)
max_length: Optional[int] = Field(100, ge=10, le=500)
temperature: Optional[float] = Field(0.7, ge=0.1, le=2.0)
class ChatResponse(BaseModel):
response: str
model_used: str
timestamp: str
processing_time: float
class HealthResponse(BaseModel):
status: str
model_loaded: bool
timestamp: str
def verify_api_key(credentials: HTTPAuthorizationCredentials = Security(security)) -> str:
"""Verify API key authentication"""
api_key = credentials.credentials
if api_key not in API_KEYS:
raise HTTPException(
status_code=status.HTTP_401_UNAUTHORIZED,
detail="Invalid API key"
)
return API_KEYS[api_key]
@app.on_event("startup")
async def load_model():
"""Load the LLM model on startup"""
global model, tokenizer, model_loaded
try:
logger.info("Loading model...")
# Try to import and load transformers
try:
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
import torch
model_name = os.getenv("MODEL_NAME", "microsoft/DialoGPT-small")
logger.info(f"Loading model: {model_name}")
# Load tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_name)
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
# Load model
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=torch.float32, # Use float32 for compatibility
low_cpu_mem_usage=True
)
model_loaded = True
logger.info("Model loaded successfully!")
except Exception as e:
logger.warning(f"Could not load transformers model: {e}")
logger.info("Running in demo mode with simple responses")
model_loaded = False
except Exception as e:
logger.error(f"Error during startup: {str(e)}")
model_loaded = False
@app.get("/", response_model=HealthResponse)
async def root():
"""Health check endpoint"""
return HealthResponse(
status="healthy",
model_loaded=model_loaded,
timestamp=datetime.now().isoformat()
)
@app.get("/health", response_model=HealthResponse)
async def health_check():
"""Detailed health check"""
return HealthResponse(
status="healthy" if model_loaded else "demo_mode",
model_loaded=model_loaded,
timestamp=datetime.now().isoformat()
)
@app.post("/chat", response_model=ChatResponse)
async def chat(
request: ChatRequest,
user: str = Depends(verify_api_key)
):
"""Main chat endpoint for AI agent interaction"""
start_time = datetime.now()
try:
if model_loaded and model is not None and tokenizer is not None:
# Use actual model
from transformers import pipeline
generator = pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
device=-1 # Use CPU
)
# Generate response
generated = generator(
request.message,
max_length=request.max_length,
temperature=request.temperature,
do_sample=True,
pad_token_id=tokenizer.eos_token_id,
num_return_sequences=1
)
response_text = generated[0]['generated_text']
if request.message in response_text:
response_text = response_text.replace(request.message, "").strip()
model_used = os.getenv("MODEL_NAME", "microsoft/DialoGPT-small")
else:
# Demo mode - simple responses
demo_responses = {
"hello": "Hello! I'm your AI assistant. How can I help you today?",
"hi": "Hi there! I'm ready to assist you.",
"how are you": "I'm doing well, thank you for asking! How can I help you?",
"what is ai": "AI (Artificial Intelligence) is the simulation of human intelligence in machines that are programmed to think and learn.",
"machine learning": "Machine learning is a subset of AI that enables computers to learn and improve from experience without being explicitly programmed.",
"default": "I'm an AI assistant ready to help you. Could you please rephrase your question?"
}
message_lower = request.message.lower()
response_text = demo_responses.get("default", "I'm here to help!")
for key, response in demo_responses.items():
if key in message_lower:
response_text = response
break
model_used = "demo_mode"
# Calculate processing time
processing_time = (datetime.now() - start_time).total_seconds()
return ChatResponse(
response=response_text,
model_used=model_used,
timestamp=datetime.now().isoformat(),
processing_time=processing_time
)
except Exception as e:
logger.error(f"Error generating response: {str(e)}")
raise HTTPException(
status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
detail=f"Error generating response: {str(e)}"
)
@app.get("/models")
async def get_model_info(user: str = Depends(verify_api_key)):
"""Get information about the loaded model"""
return {
"model_name": os.getenv("MODEL_NAME", "microsoft/DialoGPT-small"),
"model_loaded": model_loaded,
"status": "loaded" if model_loaded else "demo_mode"
}
if __name__ == "__main__":
# For local development and Hugging Face Spaces
port = int(os.getenv("PORT", "7860"))
uvicorn.run(
"app_simple:app",
host="0.0.0.0",
port=port,
reload=False
)