Spaces:
Sleeping
Sleeping
File size: 7,431 Bytes
81bb955 311fe9c 81bb955 507567e f88b11c 027b57a 797ce73 027b57a 507567e 311fe9c 797ce73 507567e 797ce73 507567e 311fe9c 797ce73 311fe9c 507567e 797ce73 507567e 797ce73 507567e 797ce73 507567e 311fe9c 507567e 311fe9c 507567e 311fe9c 797ce73 507567e 311fe9c 797ce73 311fe9c 507567e 311fe9c 797ce73 507567e 81bb955 507567e 81bb955 507567e 81bb955 507567e 027b57a 507567e 311fe9c 797ce73 507567e 797ce73 507567e 797ce73 507567e 797ce73 507567e 797ce73 507567e 797ce73 507567e 797ce73 507567e 797ce73 507567e 797ce73 507567e 797ce73 507567e 797ce73 507567e 797ce73 507567e 797ce73 507567e 797ce73 507567e 797ce73 507567e 797ce73 507567e 797ce73 507567e 797ce73 507567e 797ce73 507567e 797ce73 507567e 797ce73 507567e 797ce73 507567e 797ce73 507567e 797ce73 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 |
import gradio as gr
import openai
from transformers import pipeline
from gtts import gTTS
import time
import os
# β
Set your OpenAI API key here (keep private!)
openai.api_key = "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" # <<< REPLACE THIS WITH YOUR KEY
# OpenAI Chatbot Class
class OpenAIChatbot:
def __init__(self):
self.client = openai
self.model = "gpt-3.5-turbo"
def stream_chat(self, message: str, history: list, system_prompt: str = ""):
if not self.client:
history.append([message, "Please set your OpenAI API key first!"])
yield history
return
try:
messages = []
if system_prompt.strip():
messages.append({"role": "system", "content": system_prompt})
for chat_pair in history:
if len(chat_pair) >= 2:
messages.append({"role": "user", "content": chat_pair[0]})
messages.append({"role": "assistant", "content": chat_pair[1]})
messages.append({"role": "user", "content": message})
history.append([message, ""])
stream = self.client.chat.completions.create(
model=self.model,
messages=messages,
max_tokens=1000,
temperature=0.7,
stream=True
)
bot_response = ""
for chunk in stream:
if chunk.choices[0].delta.content is not None:
bot_response += chunk.choices[0].delta.content
history[-1] = [message, bot_response]
yield history
time.sleep(0.02)
except Exception as e:
history[-1] = [message, f"Error: {str(e)}"]
yield history
# Load transformers pipelines
sentiment_pipeline = pipeline("sentiment-analysis", model="distilbert-base-uncased-finetuned-sst-2-english")
summarization_pipeline = pipeline("summarization", model="RussianNLP/FRED-T5-Summarizer")
# Task functions
def analyze_sentiment(text):
if not text.strip():
return "Please enter text to analyze."
result = sentiment_pipeline(text)[0]
return f"**Sentiment:** {result['label']}\n**Confidence:** {result['score']:.3f}"
def summarize_text(text):
if not text.strip():
return "Please enter text to summarize."
result = summarization_pipeline(text, max_length=100, min_length=30, do_sample=False)
return result[0]['summary_text']
def text_to_speech(text):
if not text.strip():
return "Please enter text for TTS.", None
tts = gTTS(text)
filename = "tts_output.mp3"
tts.save(filename)
return f"Audio generated for {len(text.split())} words.", filename
# Initialize chatbot
chatbot = OpenAIChatbot()
# Build the interface
def create_interface():
with gr.Blocks(title="AI Assistant") as demo:
gr.Markdown("# π€ Multi-Task AI Assistant")
with gr.Tabs():
# Chatbot Tab
with gr.TabItem("π¬ Chatbot"):
with gr.Row():
model_dropdown = gr.Dropdown(
choices=["gpt-3.5-turbo", "gpt-4"],
value="gpt-3.5-turbo",
label="Model"
)
system_prompt = gr.Textbox(
label="System Prompt (Optional)",
placeholder="You are a helpful assistant..."
)
chatbot_interface = gr.Chatbot(label="Chat", height=400)
with gr.Row():
msg_input = gr.Textbox(
placeholder="Type your message...",
show_label=False,
scale=4
)
send_btn = gr.Button("Send", variant="primary")
clear_btn = gr.Button("Clear")
# Sentiment Analysis Tab
with gr.TabItem("π§ Sentiment Analysis"):
with gr.Row():
with gr.Column():
sentiment_input = gr.Textbox(
label="Text to analyze",
lines=5,
placeholder="Enter text to analyze sentiment..."
)
sentiment_btn = gr.Button("Analyze", variant="primary")
with gr.Column():
sentiment_output = gr.Textbox(
label="Results",
lines=5,
interactive=False
)
# Summarization Tab
with gr.TabItem("π° Summarization"):
with gr.Row():
with gr.Column():
summary_input = gr.Textbox(
label="Text to summarize",
lines=8,
placeholder="Enter long text to summarize..."
)
summary_btn = gr.Button("Summarize", variant="primary")
with gr.Column():
summary_output = gr.Textbox(
label="Summary",
lines=8,
interactive=False
)
# TTS Tab
with gr.TabItem("π Text-to-Speech"):
with gr.Row():
with gr.Column():
tts_input = gr.Textbox(
label="Text to convert",
lines=5,
placeholder="Enter text to convert to speech..."
)
tts_btn = gr.Button("Generate Speech", variant="primary")
with gr.Column():
tts_status = gr.Textbox(label="Status", interactive=False)
tts_audio = gr.Audio(label="Generated Audio")
# Handlers
def send_message(message, history, system_prompt):
if not message.strip():
return history, ""
for updated_history in chatbot.stream_chat(message, history, system_prompt):
yield updated_history, ""
# Events
send_btn.click(
send_message,
inputs=[msg_input, chatbot_interface, system_prompt],
outputs=[chatbot_interface, msg_input]
)
msg_input.submit(
send_message,
inputs=[msg_input, chatbot_interface, system_prompt],
outputs=[chatbot_interface, msg_input]
)
clear_btn.click(lambda: None, outputs=[chatbot_interface])
sentiment_btn.click(
analyze_sentiment,
inputs=[sentiment_input],
outputs=[sentiment_output]
)
summary_btn.click(
summarize_text,
inputs=[summary_input],
outputs=[summary_output]
)
tts_btn.click(
text_to_speech,
inputs=[tts_input],
outputs=[tts_status, tts_audio]
)
return demo
# Run app
if __name__ == "__main__":
demo = create_interface()
demo.launch(share=True)
|