Spaces:
Sleeping
Sleeping
# from transformers import ( | |
# AutoTokenizer, | |
# AutoModelForSeq2SeqLM, | |
# AutoModelForTokenClassification, | |
# pipeline | |
# ) | |
# from keybert import KeyBERT | |
# from summarizer import Summarizer | |
# import re | |
# import nltk | |
# nltk.download('punkt') | |
# class TextProcessor: | |
# def __init__(self): | |
# # Initialize summarization model | |
# self.summarizer = Summarizer('bert-base-multilingual-cased') | |
# # Initialize KeyBERT for keyword extraction | |
# self.kw_model = KeyBERT('paraphrase-multilingual-MiniLM-L12-v2') | |
# # Initialize NER for action item detection | |
# self.ner_pipeline = pipeline( | |
# "ner", | |
# model="cahya/bert-base-indonesian-NER", | |
# aggregation_strategy="simple" | |
# ) | |
# # Action item patterns | |
# self.action_patterns = [ | |
# r"akan\s+(\w+)", | |
# r"harus\s+(\w+)", | |
# r"perlu\s+(\w+)", | |
# r"mohon\s+(\w+)", | |
# r"tolong\s+(\w+)", | |
# r"segera\s+(\w+)", | |
# r"follow\s*up", | |
# r"action\s*item", | |
# r"to\s*do", | |
# r"deadline" | |
# ] | |
# # Decision patterns | |
# self.decision_patterns = [ | |
# r"(diputuskan|memutuskan)\s+(.+)", | |
# r"(disepakati|menyepakati)\s+(.+)", | |
# r"(setuju|persetujuan)\s+(.+)", | |
# r"keputusan(?:nya)?\s+(.+)", | |
# r"final(?:isasi)?\s+(.+)" | |
# ] | |
# def summarize_transcript(self, transcript_segments, ratio=0.3): | |
# """ | |
# Hierarchical summarization untuk transcript panjang | |
# """ | |
# # Gabungkan text dari semua segments | |
# full_text = ' '.join([seg['text'] for seg in transcript_segments]) | |
# # Chunking untuk dokumen panjang | |
# chunks = self._create_chunks(full_text) | |
# if len(chunks) == 1: | |
# # Direct summarization untuk dokumen pendek | |
# return self.summarizer( | |
# chunks[0], | |
# ratio=ratio, | |
# num_sentences=5 | |
# ) | |
# else: | |
# # Hierarchical summarization | |
# return self._hierarchical_summarization(chunks, ratio) | |
# def extract_key_information(self, transcript_segments): | |
# """ | |
# Extract action items, decisions, dan key topics | |
# """ | |
# full_text = ' '.join([seg['text'] for seg in transcript_segments]) | |
# # Extract keywords/topics | |
# keywords = self.kw_model.extract_keywords( | |
# full_text, | |
# keyphrase_ngram_range=(1, 3), | |
# stop_words='indonesian', | |
# top_n=10, | |
# use_mmr=True, | |
# diversity=0.5 | |
# ) | |
# # Extract action items dan decisions | |
# action_items = [] | |
# decisions = [] | |
# for segment in transcript_segments: | |
# # Check for action items | |
# if self._is_action_item(segment['text']): | |
# action_items.append({ | |
# 'text': segment['text'], | |
# 'speaker': segment['speaker'], | |
# 'timestamp': f"{segment['start']:.1f}s", | |
# 'entities': self._extract_entities(segment['text']) | |
# }) | |
# # Check for decisions | |
# if self._is_decision(segment['text']): | |
# decisions.append({ | |
# 'text': segment['text'], | |
# 'speaker': segment['speaker'], | |
# 'timestamp': f"{segment['start']:.1f}s" | |
# }) | |
# return { | |
# 'keywords': keywords, | |
# 'action_items': action_items, | |
# 'decisions': decisions | |
# } | |
# def _create_chunks(self, text, max_length=3000): | |
# """ | |
# Create overlapping chunks for long documents | |
# """ | |
# sentences = nltk.sent_tokenize(text) | |
# chunks = [] | |
# current_chunk = [] | |
# current_length = 0 | |
# for sentence in sentences: | |
# sentence_length = len(sentence) | |
# if current_length + sentence_length > max_length and current_chunk: | |
# chunks.append(' '.join(current_chunk)) | |
# # Keep last 2 sentences for overlap | |
# current_chunk = current_chunk[-2:] if len(current_chunk) > 2 else [] | |
# current_length = sum(len(s) for s in current_chunk) | |
# current_chunk.append(sentence) | |
# current_length += sentence_length | |
# if current_chunk: | |
# chunks.append(' '.join(current_chunk)) | |
# return chunks | |
# def _hierarchical_summarization(self, chunks, ratio): | |
# """ | |
# Two-level summarization for long documents | |
# """ | |
# # Level 1: Summarize each chunk | |
# chunk_summaries = [] | |
# for chunk in chunks: | |
# summary = self.summarizer( | |
# chunk, | |
# ratio=0.4, # Higher ratio for first level | |
# num_sentences=4 | |
# ) | |
# chunk_summaries.append(summary) | |
# # Level 2: Summarize the summaries | |
# combined_summary = ' '.join(chunk_summaries) | |
# final_summary = self.summarizer( | |
# combined_summary, | |
# ratio=ratio, | |
# num_sentences=6 | |
# ) | |
# return final_summary | |
# def _is_action_item(self, text): | |
# """ | |
# Detect if text contains action item | |
# """ | |
# text_lower = text.lower() | |
# # Check patterns | |
# for pattern in self.action_patterns: | |
# if re.search(pattern, text_lower): | |
# return True | |
# # Check for imperative sentences | |
# first_word = text.split()[0].lower() if text.split() else "" | |
# imperative_verbs = [ | |
# 'lakukan', 'buat', 'siapkan', 'kirim', 'hubungi', | |
# 'follow', 'prepare', 'send', 'contact', 'create' | |
# ] | |
# return first_word in imperative_verbs | |
# def _is_decision(self, text): | |
# """ | |
# Detect if text contains decision | |
# """ | |
# text_lower = text.lower() | |
# for pattern in self.decision_patterns: | |
# if re.search(pattern, text_lower): | |
# return True | |
# return False | |
# def _extract_entities(self, text): | |
# """ | |
# Extract named entities (person, date, etc) | |
# """ | |
# entities = self.ner_pipeline(text) | |
# return { | |
# 'persons': [e['word'] for e in entities if e['entity_group'] == 'PER'], | |
# 'organizations': [e['word'] for e in entities if e['entity_group'] == 'ORG'], | |
# 'dates': self._extract_dates(text) | |
# } | |
# def _extract_dates(self, text): | |
# """ | |
# Extract date mentions | |
# """ | |
# date_patterns = [ | |
# r'\d{1,2}[-/]\d{1,2}[-/]\d{2,4}', | |
# r'(senin|selasa|rabu|kamis|jumat|sabtu|minggu)', | |
# r'(besok|lusa|minggu\s+depan|bulan\s+depan)', | |
# r'(januari|februari|maret|april|mei|juni|juli|agustus|september|oktober|november|desember)' | |
# ] | |
# dates = [] | |
# for pattern in date_patterns: | |
# matches = re.findall(pattern, text.lower()) | |
# dates.extend(matches) | |
# return dates | |
from transformers import ( | |
AutoTokenizer, | |
AutoModelForSeq2SeqLM, | |
pipeline | |
) | |
from keybert import KeyBERT | |
import re | |
import nltk | |
from typing import List, Dict | |
class TextProcessor: | |
def __init__(self): | |
print("Initializing Text Processor...") | |
# Use transformers pipeline for summarization instead | |
try: | |
self.summarizer = pipeline( | |
"summarization", | |
model="sshleifer/distilbart-cnn-12-6", | |
device=-1 # CPU | |
) | |
except: | |
# Fallback to simple extractive summarization | |
self.summarizer = None | |
print("Warning: Summarization model not loaded, using fallback") | |
# Initialize KeyBERT for keyword extraction | |
try: | |
self.kw_model = KeyBERT('paraphrase-multilingual-MiniLM-L12-v2') | |
except: | |
self.kw_model = None | |
print("Warning: KeyBERT not loaded") | |
# Action item patterns | |
self.action_patterns = [ | |
r"akan\s+(\w+)", r"harus\s+(\w+)", r"perlu\s+(\w+)", | |
r"mohon\s+(\w+)", r"tolong\s+(\w+)", r"segera\s+(\w+)", | |
r"follow\s*up", r"action\s*item", r"to\s*do", r"deadline" | |
] | |
# Decision patterns | |
self.decision_patterns = [ | |
r"(diputuskan|memutuskan)\s+(.+)", | |
r"(disepakati|menyepakati)\s+(.+)", | |
r"(setuju|persetujuan)\s+(.+)", | |
r"keputusan(?:nya)?\s+(.+)", | |
r"final(?:isasi)?\s+(.+)" | |
] | |
print("Text Processor ready!") | |
def summarize_transcript(self, transcript_segments, ratio=0.3): | |
"""Summarization with fallback methods""" | |
# Combine text from all segments | |
full_text = ' '.join([seg['text'] for seg in transcript_segments]) | |
if not full_text.strip(): | |
return "No content to summarize." | |
# Try using the summarization pipeline | |
if self.summarizer: | |
try: | |
# Split into chunks if too long | |
max_chunk_length = 1024 | |
if len(full_text) > max_chunk_length: | |
chunks = self._split_into_chunks(full_text, max_chunk_length) | |
summaries = [] | |
for chunk in chunks[:3]: # Limit to first 3 chunks | |
summary = self.summarizer( | |
chunk, | |
max_length=130, | |
min_length=30, | |
do_sample=False | |
)[0]['summary_text'] | |
summaries.append(summary) | |
return ' '.join(summaries) | |
else: | |
return self.summarizer( | |
full_text, | |
max_length=150, | |
min_length=30, | |
do_sample=False | |
)[0]['summary_text'] | |
except: | |
pass | |
# Fallback: Simple extractive summarization | |
return self._simple_extractive_summary(full_text, ratio) | |
def extract_key_information(self, transcript_segments): | |
"""Extract action items, decisions, and key topics""" | |
full_text = ' '.join([seg['text'] for seg in transcript_segments]) | |
# Extract keywords/topics | |
keywords = [] | |
if self.kw_model: | |
try: | |
keywords = self.kw_model.extract_keywords( | |
full_text, | |
keyphrase_ngram_range=(1, 3), | |
stop_words=None, | |
top_n=10, | |
use_mmr=True, | |
diversity=0.5 | |
) | |
except: | |
pass | |
# If KeyBERT fails, use simple frequency-based extraction | |
if not keywords: | |
keywords = self._extract_keywords_simple(full_text) | |
# Extract action items and decisions | |
action_items = [] | |
decisions = [] | |
for segment in transcript_segments: | |
# Check for action items | |
if self._is_action_item(segment['text']): | |
action_items.append({ | |
'text': segment['text'], | |
'speaker': segment['speaker'], | |
'timestamp': f"{segment['start']:.1f}s" | |
}) | |
# Check for decisions | |
if self._is_decision(segment['text']): | |
decisions.append({ | |
'text': segment['text'], | |
'speaker': segment['speaker'], | |
'timestamp': f"{segment['start']:.1f}s" | |
}) | |
return { | |
'keywords': keywords, | |
'action_items': action_items, | |
'decisions': decisions | |
} | |
def _split_into_chunks(self, text, max_length): | |
"""Split text into chunks""" | |
words = text.split() | |
chunks = [] | |
current_chunk = [] | |
current_length = 0 | |
for word in words: | |
current_chunk.append(word) | |
current_length += len(word) + 1 | |
if current_length >= max_length: | |
chunks.append(' '.join(current_chunk)) | |
current_chunk = [] | |
current_length = 0 | |
if current_chunk: | |
chunks.append(' '.join(current_chunk)) | |
return chunks | |
def _simple_extractive_summary(self, text, ratio=0.3): | |
"""Simple extractive summarization fallback""" | |
sentences = nltk.sent_tokenize(text) | |
if len(sentences) <= 3: | |
return text | |
# Calculate number of sentences to include | |
num_sentences = max(3, int(len(sentences) * ratio)) | |
# Simple scoring: prefer sentences with more content words | |
scored_sentences = [] | |
for i, sent in enumerate(sentences): | |
# Score based on length and position | |
score = len(sent.split()) | |
if i < 3: # Boost first sentences | |
score *= 1.5 | |
if i >= len(sentences) - 2: # Boost last sentences | |
score *= 1.2 | |
scored_sentences.append((score, sent)) | |
# Sort by score and select top sentences | |
scored_sentences.sort(reverse=True) | |
selected = [sent for _, sent in scored_sentences[:num_sentences]] | |
# Return in original order | |
return ' '.join([s for s in sentences if s in selected]) | |
def _extract_keywords_simple(self, text): | |
"""Simple keyword extraction fallback""" | |
# Remove common words | |
stopwords = { | |
'yang', 'dan', 'di', 'ke', 'dari', 'untuk', 'pada', 'adalah', | |
'ini', 'itu', 'dengan', 'tersebut', 'dalam', 'dapat', 'akan', | |
'the', 'a', 'an', 'and', 'or', 'but', 'in', 'on', 'at', 'to', | |
'for', 'of', 'with', 'as', 'is', 'was', 'are', 'were' | |
} | |
# Count word frequency | |
words = re.findall(r'\b\w+\b', text.lower()) | |
word_freq = {} | |
for word in words: | |
if len(word) > 3 and word not in stopwords: | |
word_freq[word] = word_freq.get(word, 0) + 1 | |
# Get top keywords | |
keywords = sorted(word_freq.items(), key=lambda x: x[1], reverse=True)[:10] | |
# Format like KeyBERT output | |
return [(word, freq/len(words)) for word, freq in keywords] | |
def _is_action_item(self, text): | |
"""Detect if text contains action item""" | |
text_lower = text.lower() | |
# Check patterns | |
for pattern in self.action_patterns: | |
if re.search(pattern, text_lower): | |
return True | |
# Check for imperative sentences | |
first_word = text.split()[0].lower() if text.split() else "" | |
imperative_verbs = [ | |
'lakukan', 'buat', 'siapkan', 'kirim', 'hubungi', | |
'follow', 'prepare', 'send', 'contact', 'create' | |
] | |
return first_word in imperative_verbs | |
def _is_decision(self, text): | |
"""Detect if text contains decision""" | |
text_lower = text.lower() | |
for pattern in self.decision_patterns: | |
if re.search(pattern, text_lower): | |
return True | |
return False |