|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
import torch |
|
import spaces |
|
import gradio as gr |
|
|
|
model_id = "Qwen/Qwen3-1.7B" |
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_id, |
|
torch_dtype = "auto" |
|
) |
|
tokenizer = AutoTokenizer.from_pretrained(model_id) |
|
|
|
if torch.cuda.is_available(): |
|
device = torch.device("cuda") |
|
else: |
|
device = torch.device("cpu") |
|
|
|
model = model.to(device) |
|
|
|
@spaces.GPU |
|
def respuesta( |
|
message, |
|
history, |
|
system_message, |
|
max_tokens, |
|
temperature, |
|
top_p |
|
): |
|
messages = [{"role": "system", "content": system_message}] |
|
|
|
for val in history: |
|
if val[0]: |
|
messages.append({"role": "user", "content": val[0]}) |
|
if val[1]: |
|
messages.append({"role": "assistant", "content": val[1]}) |
|
|
|
messages.append({"role": "user", "content": message}) |
|
|
|
input_ids = tokenizer.apply_chat_template( |
|
messages, |
|
tokenize=False, |
|
add_generation_prompt=True, |
|
enable_thinking=True |
|
).to(model.device) |
|
|
|
model_inputs = tokenizer([text], return_tensor='pt') |
|
|
|
outputs = model.generate( |
|
**model_inputs, |
|
max_new_tokens=max_tokens, |
|
do_sample=True, |
|
temperature=temperature, |
|
top_p=top_p |
|
) |
|
|
|
response = '' |
|
|
|
for message in tokenizer.decode( |
|
outputs[0][input_ids.shape[-1]:], |
|
skip_special_tokens=True |
|
): |
|
response += message |
|
yield response |
|
|
|
|
|
demo = gr.ChatInterface( |
|
respuesta, |
|
additional_inputs=[ |
|
gr.Textbox(value="Eres un chatbot amigable", label="System messaage"), |
|
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), |
|
gr.Slider(minimum=0.1, maximum=4, value=0.7, step=0.1, label="Temperature"), |
|
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p"), |
|
] |
|
) |
|
|
|
if __name__ == "__main__": |
|
demo.launch() |