qwen-30B / app.py
Yersel's picture
adapt chatbot
1a908a5
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
import spaces
import gradio as gr
model_id = "Qwen/Qwen3-1.7B"
model = AutoModelForCausalLM.from_pretrained(
model_id,
torch_dtype = "auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_id)
if torch.cuda.is_available():
device = torch.device("cuda")
else:
device = torch.device("cpu")
model = model.to(device)
@spaces.GPU
def respuesta(
message,
history,
system_message,
max_tokens,
temperature,
top_p
):
messages = [{"role": "system", "content": system_message}]
for val in history:
if val[0]:
messages.append({"role": "user", "content": val[0]})
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
messages.append({"role": "user", "content": message})
input_ids = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True,
enable_thinking=True
).to(model.device)
model_inputs = tokenizer([text], return_tensor='pt')
outputs = model.generate(
**model_inputs,
max_new_tokens=max_tokens,
do_sample=True,
temperature=temperature,
top_p=top_p
)
response = ''
for message in tokenizer.decode(
outputs[0][input_ids.shape[-1]:],
skip_special_tokens=True
):
response += message
yield response
demo = gr.ChatInterface(
respuesta,
additional_inputs=[
gr.Textbox(value="Eres un chatbot amigable", label="System messaage"),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4, value=0.7, step=0.1, label="Temperature"),
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p"),
]
)
if __name__ == "__main__":
demo.launch()