File size: 7,106 Bytes
63ee3e5 37652eb 63ee3e5 35bcda1 63ee3e5 c7f56a8 63ee3e5 35bcda1 63ee3e5 35bcda1 c7f56a8 35bcda1 c7f56a8 35bcda1 63ee3e5 c7f56a8 63ee3e5 c7f56a8 63ee3e5 c7f56a8 63ee3e5 c7f56a8 63ee3e5 c7f56a8 63ee3e5 c7f56a8 63ee3e5 c7f56a8 63ee3e5 c7f56a8 63ee3e5 c7f56a8 63ee3e5 c7f56a8 63ee3e5 c7f56a8 63ee3e5 c7f56a8 63ee3e5 c7f56a8 63ee3e5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 |
import gradio as gr
import torch
import numpy as np
import librosa
from transformers import pipeline
from melo.api import TTS
# --------------------------------------------------
# ASR Pipeline (for English transcription)
# --------------------------------------------------
asr = pipeline(
"automatic-speech-recognition",
model="facebook/wav2vec2-base-960h"
)
# --------------------------------------------------
# Mapping for Target Languages and Models
# --------------------------------------------------
translation_models = {
"Spanish": "Helsinki-NLP/opus-mt-en-es",
"French": "Helsinki-NLP/opus-mt-en-fr",
"German": "Helsinki-NLP/opus-mt-en-de",
"Chinese": "Helsinki-NLP/opus-mt-en-zh",
"Russian": "Helsinki-NLP/opus-mt-en-ru",
"Arabic": "Helsinki-NLP/opus-mt-en-ar",
"Portuguese": "Helsinki-NLP/opus-mt-en-pt",
"Japanese": "Helsinki-NLP/opus-mt-en-ja",
"Italian": "Helsinki-NLP/opus-mt-en-it",
"Korean": "Helsinki-NLP/opus-mt-en-ko"
}
# Each language often requires a specific pipeline task name
# (e.g., "translation_en_to_zh" rather than "translation_en_to_chinese")
translation_tasks = {
"Spanish": "translation_en_to_es",
"French": "translation_en_to_fr",
"German": "translation_en_to_de",
"Chinese": "translation_en_to_zh",
"Russian": "translation_en_to_ru",
"Arabic": "translation_en_to_ar",
"Portuguese": "translation_en_to_pt",
"Japanese": "translation_en_to_ja",
"Italian": "translation_en_to_it",
"Korean": "translation_en_to_ko"
}
# TTS models (some may not exist or may be unofficial)
tts_models = {
"Spanish": "myshell-ai/MeloTTS-Spanish",
"French": "myshell-ai/MeloTTS-French",
"German": "tts_models/de/tacotron2",
"Chinese": "myshell-ai/MeloTTS-English-v2", # Verify if this actually exists on Hugging Face
"Russian": "tts_models/ru/tacotron2", # Same note
"Arabic": "tts_models/ar/tacotron2", # Same note
"Portuguese": "tts_models/pt/tacotron2", # Same note
"Japanese": "myshell-ai/MeloTTS-Japanese", # Same note
"Italian": "tts_models/it/tacotron2", # Same note
"Korean": "myshell-ai/MeloTTS-Korean" # Same note
}
# --------------------------------------------------
# Caches for translator and TTS pipelines
# --------------------------------------------------
translator_cache = {}
tts_cache = {}
def get_translator(target_language):
"""
Retrieve or create a translation pipeline for the specified language.
"""
if target_language in translator_cache:
return translator_cache[target_language]
model_name = translation_models[target_language]
task_name = translation_tasks[target_language]
translator = pipeline(task_name, model=model_name)
translator_cache[target_language] = translator
return translator
def get_tts(target_language):
"""
Retrieve or create a TTS pipeline for the specified language, if available.
"""
if target_language in tts_cache:
return tts_cache[target_language]
model_name = tts_models.get(target_language)
if model_name is None:
# If no TTS model is mapped, raise an error or handle gracefully
raise ValueError(f"No TTS model available for {target_language}.")
try:
tts_pipeline = pipeline("text-to-speech", model=model_name)
except Exception as e:
raise ValueError(
f"Failed to load TTS model for {target_language}. "
f"Make sure '{model_name}' exists on Hugging Face.\nError: {e}"
)
tts_cache[target_language] = tts_pipeline
return tts_pipeline
# --------------------------------------------------
# Prediction Function
# --------------------------------------------------
def predict(audio, text, target_language):
"""
1. Obtain English text (from text input or ASR).
2. Translate English -> target_language.
3. Synthesize speech in target_language.
"""
# 1. English text from text input (if provided), else from audio via ASR
if text.strip():
english_text = text.strip()
elif audio is not None:
sample_rate, audio_data = audio
# Ensure the audio is float32 for librosa
if audio_data.dtype not in [np.float32, np.float64]:
audio_data = audio_data.astype(np.float32)
# Convert stereo to mono if needed
if len(audio_data.shape) > 1 and audio_data.shape[1] > 1:
audio_data = np.mean(audio_data, axis=1)
# Resample to 16 kHz if necessary
if sample_rate != 16000:
audio_data = librosa.resample(audio_data, orig_sr=sample_rate, target_sr=16000)
input_audio = {"array": audio_data, "sampling_rate": 16000}
asr_result = asr(input_audio)
english_text = asr_result["text"]
else:
return "No input provided.", "", None
# 2. Translation step
translator = get_translator(target_language)
try:
translation_result = translator(english_text)
translated_text = translation_result[0]["translation_text"]
except Exception as e:
# If there's an error in translation, return partial results
return english_text, f"Translation error: {e}", None
# 3. TTS step: synthesize speech from the translated text
try:
tts_pipeline = get_tts(target_language)
tts_result = tts_pipeline(translated_text)
# The TTS pipeline returns a dict with "wav" and "sample_rate"
synthesized_audio = (tts_result["sample_rate"], tts_result["wav"])
except Exception as e:
# If TTS fails, return partial results
return english_text, translated_text, f"TTS error: {e}"
return english_text, translated_text, synthesized_audio
# --------------------------------------------------
# Gradio Interface Setup
# --------------------------------------------------
iface = gr.Interface(
fn=predict,
inputs=[
gr.Audio(type="numpy", label="Record/Upload English Audio (optional)"),
gr.Textbox(lines=4, placeholder="Or enter English text here", label="English Text Input (optional)"),
gr.Dropdown(choices=list(translation_models.keys()), value="Spanish", label="Target Language")
],
outputs=[
gr.Textbox(label="English Transcription"),
gr.Textbox(label="Translation (Target Language)"),
gr.Audio(label="Synthesized Speech in Target Language")
],
title="Multimodal Language Learning Aid",
description=(
"This app helps language learners by providing three outputs:\n"
"1. English transcription (from ASR or text input),\n"
"2. Translation to a target language (using Helsinki-NLP models), and\n"
"3. Synthetic speech in the target language.\n\n"
"Select one of the top 10 commonly used languages from the dropdown.\n"
"Either record/upload an English audio sample or enter English text directly.\n\n"
"Note: Some TTS models may not exist or be unstable for certain languages."
),
allow_flagging="never"
)
if __name__ == "__main__":
iface.launch()
|