File size: 5,045 Bytes
63ee3e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
import gradio as gr
import torch
import numpy as np
import librosa
from transformers import pipeline

# --------------------------------------------------
# ASR Pipeline (for English transcription)
# --------------------------------------------------
asr = pipeline(
    "automatic-speech-recognition",
    model="facebook/wav2vec2-large-960h-lv60-self"
)

# --------------------------------------------------
# Mapping for Target Languages and Models
# --------------------------------------------------
translation_models = {
    "Spanish": "Helsinki-NLP/opus-mt-en-es",
    "French": "Helsinki-NLP/opus-mt-en-fr",
    "German": "Helsinki-NLP/opus-mt-en-de",
    "Chinese": "Helsinki-NLP/opus-mt-en-zh",
    "Russian": "Helsinki-NLP/opus-mt-en-ru",
    "Arabic": "Helsinki-NLP/opus-mt-en-ar",
    "Portuguese": "Helsinki-NLP/opus-mt-en-pt",
    "Japanese": "Helsinki-NLP/opus-mt-en-ja",
    "Italian": "Helsinki-NLP/opus-mt-en-it",
    "Korean": "Helsinki-NLP/opus-mt-en-ko"
}

tts_models = {
    "Spanish": "tts_models/es/tacotron2-DDC",
    "French": "tts_models/fr/tacotron2",
    "German": "tts_models/de/tacotron2",
    "Chinese": "tts_models/zh/tacotron2",
    "Russian": "tts_models/ru/tacotron2",
    "Arabic": "tts_models/ar/tacotron2",
    "Portuguese": "tts_models/pt/tacotron2",
    "Japanese": "tts_models/ja/tacotron2",
    "Italian": "tts_models/it/tacotron2",
    "Korean": "tts_models/ko/tacotron2"
}

# Caches for translator and TTS pipelines
translator_cache = {}
tts_cache = {}

def get_translator(target_language):
    if target_language in translator_cache:
        return translator_cache[target_language]
    model_name = translation_models[target_language]
    # Pipeline task naming is case sensitive; here we assume task "translation_en_to_<lang>"
    translator = pipeline("translation_en_to_" + target_language.lower(), model=model_name)
    translator_cache[target_language] = translator
    return translator

def get_tts(target_language):
    if target_language in tts_cache:
        return tts_cache[target_language]
    model_name = tts_models[target_language]
    tts = pipeline("text-to-speech", model=model_name)
    tts_cache[target_language] = tts
    return tts

# --------------------------------------------------
# Prediction Function
# --------------------------------------------------
def predict(audio, text, target_language):
    # Use text input if provided; otherwise, use ASR on audio
    if text.strip() != "":
        english_text = text.strip()
    elif audio is not None:
        sample_rate, audio_data = audio

        # Ensure the audio is floating-point for librosa
        if audio_data.dtype not in [np.float32, np.float64]:
            audio_data = audio_data.astype(np.float32)

        # Convert stereo to mono if needed
        if len(audio_data.shape) > 1 and audio_data.shape[1] > 1:
            audio_data = np.mean(audio_data, axis=1)

        # Resample to 16 kHz if necessary
        if sample_rate != 16000:
            audio_data = librosa.resample(audio_data, orig_sr=sample_rate, target_sr=16000)

        input_audio = {"array": audio_data, "sampling_rate": 16000}
        asr_result = asr(input_audio)
        english_text = asr_result["text"]
    else:
        return "No input provided.", "", None

    # Translation step
    translator = get_translator(target_language)
    translation_result = translator(english_text)
    translated_text = translation_result[0]["translation_text"]

    # TTS step: synthesize speech from the translated text
    tts = get_tts(target_language)
    tts_result = tts(translated_text)
    # The TTS pipeline returns a dict with "wav" and "sample_rate"
    synthesized_audio = (tts_result["sample_rate"], tts_result["wav"])

    return english_text, translated_text, synthesized_audio

# --------------------------------------------------
# Gradio Interface Setup
# --------------------------------------------------
iface = gr.Interface(
    fn=predict,
    inputs=[
        gr.Audio(type="numpy", label="Record/Upload English Audio (optional)"),
        gr.Textbox(lines=4, placeholder="Or enter English text here", label="English Text Input (optional)"),
        gr.Dropdown(choices=list(translation_models.keys()), value="Spanish", label="Target Language")
    ],
    outputs=[
        gr.Textbox(label="English Transcription"),
        gr.Textbox(label="Translation (Target Language)"),
        gr.Audio(label="Synthesized Speech in Target Language")
    ],
    title="Multimodal Language Learning Aid",
    description=(
        "This app helps language learners by providing three outputs:\n"
        "1. English transcription (from ASR or text input),\n"
        "2. Translation to a target language, and\n"
        "3. Synthetic speech in the target language.\n\n"
        "Choose one of the top 10 commonly used languages from the dropdown.\n"
        "You can either record/upload an English audio sample or enter English text directly."
    ),
    allow_flagging="never"
)

if __name__ == "__main__":
    iface.launch()