Spaces:
Running
on
Zero
Running
on
Zero
File size: 47,281 Bytes
a7dedf9 bcf1a8b 277670a a7dedf9 0e1e36c ae09b40 e85ffa0 ae09b40 e85ffa0 ae09b40 e85ffa0 ae09b40 e85ffa0 ae09b40 0e1e36c a7dedf9 277670a e85ffa0 277670a e85ffa0 277670a e85ffa0 277670a 61ba3dd 277670a 61ba3dd 277670a 61ba3dd 277670a 61ba3dd 277670a a7dedf9 ccc542d a7dedf9 99459bc a7dedf9 8d8c6cc a7dedf9 e85ffa0 a7dedf9 277670a ef5adb7 61ba3dd e85ffa0 9cb167a e85ffa0 9cb167a e85ffa0 a7dedf9 ccc542d e85ffa0 9cb167a a7dedf9 61ba3dd ccc542d ae09b40 449e3d1 a7dedf9 9cb167a a7dedf9 b564f44 a7dedf9 9a7b741 a7dedf9 affc2a7 b564f44 a7dedf9 9cb167a a7dedf9 e85ffa0 9cb167a b564f44 9cb167a b564f44 cf779d9 fb20bf9 4a2b023 fb20bf9 cf779d9 b564f44 cf779d9 fb20bf9 4a2b023 fb20bf9 cf779d9 b564f44 cf779d9 fb20bf9 4a2b023 fb20bf9 cf779d9 b564f44 9cb167a b564f44 9cb167a b564f44 9cb167a b564f44 9cb167a b564f44 9cb167a b564f44 9cb167a b564f44 9cb167a b564f44 9cb167a b564f44 9cb167a b564f44 9cb167a b564f44 9cb167a b564f44 9cb167a b564f44 9cb167a b564f44 9cb167a b564f44 9cb167a b564f44 9cb167a b564f44 9cb167a 4a2b023 b564f44 4a2b023 b564f44 4a2b023 b564f44 fb20bf9 b564f44 fb20bf9 0f2ce4d b564f44 4a2b023 cf779d9 4a2b023 cf779d9 fb20bf9 cf779d9 fb20bf9 4a2b023 cf779d9 4a2b023 fb20bf9 cf779d9 4a2b023 fb20bf9 cf779d9 9cb167a b564f44 4a2b023 9cb167a b564f44 9cb167a b564f44 9cb167a b564f44 9cb167a b564f44 4a2b023 cf779d9 b564f44 9cb167a b564f44 9cb167a b564f44 9cb167a b564f44 9cb167a e85ffa0 9cb167a 8994c36 9cb167a 8994c36 9cb167a 8994c36 9cb167a a7dedf9 4a2b023 a7dedf9 4a2b023 9cb167a 4a2b023 b564f44 4a2b023 b564f44 9cb167a b564f44 9cb167a b564f44 9cb167a 4a2b023 9cb167a b564f44 9cb167a b564f44 9cb167a b564f44 9cb167a b564f44 3b32643 b564f44 a7dedf9 e85ffa0 9cb167a 277670a e85ffa0 277670a 61ba3dd ef5adb7 61ba3dd ef5adb7 a7dedf9 e85ffa0 929bf51 a7dedf9 9cb167a 3b32643 9cb167a 11c9ec8 9cb167a 8994c36 9cb167a 3b32643 8994c36 b564f44 3b32643 8994c36 b564f44 3b32643 fe5f0a4 9cb167a 8994c36 9cb167a 8994c36 9cb167a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 |
import torch
from torch import nn
import torch.nn.functional as F
import torchvision.transforms.functional as TF
from torch import Tensor
import spaces
import numpy as np
from PIL import Image
import gradio as gr
from matplotlib import cm
from huggingface_hub import hf_hub_download
from warnings import warn
from models import get_model
mean = (0.485, 0.456, 0.406)
std = (0.229, 0.224, 0.225)
alpha = 0.8
EPS = 1e-8
loaded_model = None
current_model_config = {"variant": None, "dataset": None, "metric": None}
pretrained_models = [
"ZIP-B @ ShanghaiTech A @ MAE", "ZIP-B @ ShanghaiTech A @ NAE",
"ZIP-B @ ShanghaiTech B @ MAE", "ZIP-B @ ShanghaiTech B @ NAE",
"ZIP-B @ UCF-QNRF @ MAE", "ZIP-B @ UCF-QNRF @ NAE",
"ZIP-B @ NWPU-Crowd @ MAE", "ZIP-B @ NWPU-Crowd @ NAE",
"━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━",
"ZIP-S @ ShanghaiTech A @ MAE", "ZIP-S @ ShanghaiTech A @ NAE",
"ZIP-S @ ShanghaiTech B @ MAE", "ZIP-S @ ShanghaiTech B @ NAE",
"ZIP-S @ UCF-QNRF @ MAE", "ZIP-S @ UCF-QNRF @ NAE",
"━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━",
"ZIP-T @ ShanghaiTech A @ MAE", "ZIP-T @ ShanghaiTech A @ NAE",
"ZIP-T @ ShanghaiTech B @ MAE", "ZIP-T @ ShanghaiTech B @ NAE",
"ZIP-T @ UCF-QNRF @ MAE", "ZIP-T @ UCF-QNRF @ NAE",
"━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━",
"ZIP-N @ ShanghaiTech A @ MAE", "ZIP-N @ ShanghaiTech A @ NAE",
"ZIP-N @ ShanghaiTech B @ MAE", "ZIP-N @ ShanghaiTech B @ NAE",
"ZIP-N @ UCF-QNRF @ MAE", "ZIP-N @ UCF-QNRF @ NAE",
"━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━",
"ZIP-P @ ShanghaiTech A @ MAE", "ZIP-P @ ShanghaiTech A @ NAE",
"ZIP-P @ ShanghaiTech B @ MAE", "ZIP-P @ ShanghaiTech B @ NAE",
"ZIP-P @ UCF-QNRF @ MAE", "ZIP-P @ UCF-QNRF @ NAE",
]
# -----------------------------
# Model management functions
# -----------------------------
def update_model_if_needed(variant_dataset_metric: str):
"""
Load a new model only if the configuration has changed.
"""
global loaded_model, current_model_config
# 如果是分割线,则跳过
if "━━━━━━" in variant_dataset_metric:
return "Please select a valid model configuration"
parts = variant_dataset_metric.split(" @ ")
if len(parts) != 3:
return "Invalid model configuration format"
variant, dataset, metric = parts[0], parts[1], parts[2].lower()
if dataset == "ShanghaiTech A":
dataset_name = "sha"
elif dataset == "ShanghaiTech B":
dataset_name = "shb"
elif dataset == "UCF-QNRF":
dataset_name = "qnrf"
elif dataset == "NWPU-Crowd":
dataset_name = "nwpu"
else:
return f"Unknown dataset: {dataset}"
# 只更新配置,不在主进程中加载模型
if (current_model_config["variant"] != variant or
current_model_config["dataset"] != dataset_name or
current_model_config["metric"] != metric):
print(f"Model configuration updated: {variant} @ {dataset} with {metric} metric")
current_model_config = {"variant": variant, "dataset": dataset_name, "metric": metric}
loaded_model = None # 重置模型,将在GPU进程中重新加载
return f"Model configuration set: {variant} @ {dataset} ({metric})"
else:
print(f"Model configuration unchanged: {variant} @ {dataset} with {metric} metric")
return f"Model configuration: {variant} @ {dataset} ({metric})"
# -----------------------------
# Define the model architecture
# -----------------------------
def load_model(variant: str, dataset: str = "ShanghaiTech B", metric: str = "mae"):
""" Load the model weights from the Hugging Face Hub."""
# global loaded_model
# Build model
model_info_path = hf_hub_download(
repo_id=f"Yiming-M/{variant}",
filename=f"checkpoints/{dataset}/best_{metric}.pth",
)
model = get_model(model_info_path=model_info_path)
model.eval()
# loaded_model = model
return model
def _calc_size(
img_w: int,
img_h: int,
min_size: int,
max_size: int,
base: int = 32
):
"""
This function generates a new size for an image while keeping the aspect ratio. The new size should be within the given range (min_size, max_size).
Args:
img_w (int): The width of the image.
img_h (int): The height of the image.
min_size (int): The minimum size of the edges of the image.
max_size (int): The maximum size of the edges of the image.
# base (int): The base number to which the new size should be a multiple of.
"""
assert min_size % base == 0, f"min_size ({min_size}) must be a multiple of {base}"
if max_size != float("inf"):
assert max_size % base == 0, f"max_size ({max_size}) must be a multiple of {base} if provided"
assert min_size <= max_size, f"min_size ({min_size}) must be less than or equal to max_size ({max_size})"
aspect_ratios = (img_w / img_h, img_h / img_w)
if min_size / max_size <= min(aspect_ratios) <= max(aspect_ratios) <= max_size / min_size: # possible to resize and preserve the aspect ratio
if min_size <= min(img_w, img_h) <= max(img_w, img_h) <= max_size: # already within the range, no need to resize
ratio = 1.
elif min(img_w, img_h) < min_size: # smaller than the minimum size, resize to the minimum size
ratio = min_size / min(img_w, img_h)
else: # larger than the maximum size, resize to the maximum size
ratio = max_size / max(img_w, img_h)
new_w, new_h = int(round(img_w * ratio / base) * base), int(round(img_h * ratio / base) * base)
new_w = max(min_size, min(max_size, new_w))
new_h = max(min_size, min(max_size, new_h))
return new_w, new_h
else: # impossible to resize and preserve the aspect ratio
msg = f"Impossible to resize {img_w}x{img_h} image while preserving the aspect ratio to a size within the range ({min_size}, {max_size}). Will not limit the maximum size."
warn(msg)
return _calc_size(img_w, img_h, min_size, float("inf"), base)
# -----------------------------
# Preprocessing function
# -----------------------------
# Adjust the image transforms to match what your model expects.
def transform(image: Image.Image, dataset_name: str) -> Tensor:
assert isinstance(image, Image.Image), "Input must be a PIL Image"
image_tensor = TF.to_tensor(image)
if dataset_name == "sha":
min_size = 448
max_size = float("inf")
elif dataset_name == "shb":
min_size = 448
max_size = float("inf")
elif dataset_name == "qnrf":
min_size = 448
max_size = 2048
elif dataset_name == "nwpu":
min_size = 448
max_size = 3072
image_height, image_width = image_tensor.shape[-2:]
new_width, new_height = _calc_size(
img_w=image_width,
img_h=image_height,
min_size=min_size,
max_size=max_size,
base=32
)
if new_height != image_height or new_width != image_width:
image_tensor = TF.resize(image_tensor, size=(new_height, new_width), interpolation=TF.InterpolationMode.BICUBIC, antialias=True)
image_tensor = TF.normalize(image_tensor, mean=mean, std=std)
return image_tensor.unsqueeze(0) # Add batch dimension
def _sliding_window_predict(
model: nn.Module,
image: Tensor,
window_size: int,
stride: int,
max_num_windows: int = 256
):
assert len(image.shape) == 4, f"Image must be a 4D tensor (1, c, h, w), got {image.shape}"
window_size = (int(window_size), int(window_size)) if isinstance(window_size, (int, float)) else window_size
stride = (int(stride), int(stride)) if isinstance(stride, (int, float)) else stride
window_size = tuple(window_size)
stride = tuple(stride)
assert isinstance(window_size, tuple) and len(window_size) == 2 and window_size[0] > 0 and window_size[1] > 0, f"Window size must be a positive integer tuple (h, w), got {window_size}"
assert isinstance(stride, tuple) and len(stride) == 2 and stride[0] > 0 and stride[1] > 0, f"Stride must be a positive integer tuple (h, w), got {stride}"
assert stride[0] <= window_size[0] and stride[1] <= window_size[1], f"Stride must be smaller than window size, got {stride} and {window_size}"
image_height, image_width = image.shape[-2:]
window_height, window_width = window_size
assert image_height >= window_height and image_width >= window_width, f"Image size must be larger than window size, got image size {image.shape} and window size {window_size}"
stride_height, stride_width = stride
num_rows = int(np.ceil((image_height - window_height) / stride_height) + 1)
num_cols = int(np.ceil((image_width - window_width) / stride_width) + 1)
if hasattr(model, "block_size"):
block_size = model.block_size
elif hasattr(model, "module") and hasattr(model.module, "block_size"):
block_size = model.module.block_size
else:
raise ValueError("Model must have block_size attribute")
assert window_height % block_size == 0 and window_width % block_size == 0, f"Window size must be divisible by block size, got {window_size} and {block_size}"
windows = []
for i in range(num_rows):
for j in range(num_cols):
x_start, y_start = i * stride_height, j * stride_width
x_end, y_end = x_start + window_height, y_start + window_width
if x_end > image_height:
x_start, x_end = image_height - window_height, image_height
if y_end > image_width:
y_start, y_end = image_width - window_width, image_width
window = image[:, :, x_start:x_end, y_start:y_end]
windows.append(window)
windows = torch.cat(windows, dim=0).to(image.device) # batched windows, shape: (num_windows, c, h, w)
model.eval()
pi_maps, lambda_maps = [], []
for i in range(0, len(windows), max_num_windows):
with torch.no_grad():
image_feats = model.backbone(windows[i: min(i + max_num_windows, len(windows))])
pi_image_feats, lambda_image_feats = model.pi_head(image_feats), model.lambda_head(image_feats)
pi_image_feats = F.normalize(pi_image_feats.permute(0, 2, 3, 1), p=2, dim=-1) # shape (B, H, W, C)
lambda_image_feats = F.normalize(lambda_image_feats.permute(0, 2, 3, 1), p=2, dim=-1) # shape (B, H, W, C)
pi_text_feats, lambda_text_feats = model.pi_text_feats, model.lambda_text_feats
pi_logit_scale, lambda_logit_scale = model.pi_logit_scale.exp(), model.lambda_logit_scale.exp()
pi_logit_map = pi_logit_scale * pi_image_feats @ pi_text_feats.t() # (B, H, W, 2), logits per image
lambda_logit_map = lambda_logit_scale * lambda_image_feats @ lambda_text_feats.t() # (B, H, W, N - 1), logits per image
pi_logit_map = pi_logit_map.permute(0, 3, 1, 2) # (B, 2, H, W)
lambda_logit_map = lambda_logit_map.permute(0, 3, 1, 2) # (B, N - 1, H, W)
lambda_map = (lambda_logit_map.softmax(dim=1) * model.bin_centers[:, 1:]).sum(dim=1, keepdim=True) # (B, 1, H, W)
pi_map = pi_logit_map.softmax(dim=1)[:, 0:1] # (B, 1, H, W)
pi_maps.append(pi_map.cpu().numpy())
lambda_maps.append(lambda_map.cpu().numpy())
# assemble the density map
pi_maps = np.concatenate(pi_maps, axis=0) # shape: (num_windows, 1, H, W)
lambda_maps = np.concatenate(lambda_maps, axis=0) # shape: (num_windows, 1, H, W)
assert pi_maps.shape == lambda_maps.shape, f"pi_maps and lambda_maps must have the same shape, got {pi_maps.shape} and {lambda_maps.shape}"
pi_map = np.zeros((pi_maps.shape[1], image_height // block_size, image_width // block_size), dtype=np.float32)
lambda_map = np.zeros((lambda_maps.shape[1], image_height // block_size, image_width // block_size), dtype=np.float32)
count_map = np.zeros((pi_maps.shape[1], image_height // block_size, image_width // block_size), dtype=np.float32)
idx = 0
for i in range(num_rows):
for j in range(num_cols):
x_start, y_start = i * stride_height, j * stride_width
x_end, y_end = x_start + window_height, y_start + window_width
if x_end > image_height:
x_start, x_end = image_height - window_height, image_height
if y_end > image_width:
y_start, y_end = image_width - window_width, image_width
pi_map[:, (x_start // block_size): (x_end // block_size), (y_start // block_size): (y_end // block_size)] += pi_maps[idx, :, :, :]
lambda_map[:, (x_start // block_size): (x_end // block_size), (y_start // block_size): (y_end // block_size)] += lambda_maps[idx, :, :, :]
count_map[:, (x_start // block_size): (x_end // block_size), (y_start // block_size): (y_end // block_size)] += 1.
idx += 1
# average the density map
pi_map /= count_map
lambda_map /= count_map
# convert to Tensor and reshape
pi_map = torch.from_numpy(pi_map).unsqueeze(0) # shape: (1, 1, H // block_size, W // block_size)
lambda_map = torch.from_numpy(lambda_map).unsqueeze(0) # shape: (1, 1, H // block_size, W // block_size)
return pi_map, lambda_map
# -----------------------------
# Inference function
# -----------------------------
@spaces.GPU(duration=120)
def predict(image: Image.Image, variant_dataset_metric: str):
"""
Given an input image, preprocess it, run the model to obtain a density map,
compute the total crowd count, and prepare the density map for display.
"""
global loaded_model, current_model_config
# 在GPU进程中定义device
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# 如果选择的是分割线,返回错误信息
if "━━━━━━" in variant_dataset_metric:
return image, None, None, "⚠️ Please select a valid model configuration", None, None, None
parts = variant_dataset_metric.split(" @ ")
if len(parts) != 3:
return image, None, None, "❌ Invalid model configuration format", None, None, None
variant, dataset, metric = parts[0], parts[1], parts[2].lower()
if dataset == "ShanghaiTech A":
dataset_name = "sha"
elif dataset == "ShanghaiTech B":
dataset_name = "shb"
elif dataset == "UCF-QNRF":
dataset_name = "qnrf"
elif dataset == "NWPU-Crowd":
dataset_name = "nwpu"
else:
return image, None, None, f"❌ Unknown dataset: {dataset}", None, None, None
# 在GPU进程中加载模型(如果需要)
if (loaded_model is None or
current_model_config["variant"] != variant or
current_model_config["dataset"] != dataset_name or
current_model_config["metric"] != metric):
print(f"Loading model in GPU process: {variant} @ {dataset} with {metric} metric")
loaded_model = load_model(variant=variant, dataset=dataset_name, metric=metric)
current_model_config = {"variant": variant, "dataset": dataset_name, "metric": metric}
if not hasattr(loaded_model, "input_size"):
if dataset_name == "sha":
loaded_model.input_size = 224
elif dataset_name == "shb":
loaded_model.input_size = 448
elif dataset_name == "qnrf":
loaded_model.input_size = 672
elif dataset_name == "nwpu":
loaded_model.input_size = 672
elif isinstance(loaded_model.input_size, (list, tuple)):
loaded_model.input_size = loaded_model.input_size[0] # Use the first element if it's a list or tuple
else:
assert isinstance(loaded_model.input_size, (int, float)), f"input_size must be an int or float, got {type(loaded_model.input_size)}"
loaded_model.to(device)
# Preprocess the image
input_width, input_height = image.size
image_tensor = transform(image, dataset_name).to(device) # shape: (1, 3, H, W)
input_size = loaded_model.input_size
image_height, image_width = image_tensor.shape[-2:]
aspect_ratio = image_width / image_height
if image_height < input_size:
new_height = input_size
new_width = int(new_height * aspect_ratio)
image_tensor = F.interpolate(image_tensor, size=(new_height, new_width), mode="bicubic", align_corners=False, antialias=True)
image_height, image_width = new_height, new_width
if image_width < input_size:
new_width = input_size
new_height = int(new_width / aspect_ratio)
image_tensor = F.interpolate(image_tensor, size=(new_height, new_width), mode="bicubic", align_corners=False, antialias=True)
image_height, image_width = new_height, new_width
with torch.no_grad():
if hasattr(loaded_model, "num_vpt") and loaded_model.num_vpt is not None and loaded_model.num_vpt > 0: # For ViT models, use sliding window prediction
# For ViT models with VPT
pi_map, lambda_map = _sliding_window_predict(
model=loaded_model,
image=image_tensor,
window_size=input_size,
stride=input_size
)
elif hasattr(loaded_model, "pi_text_feats") and hasattr(loaded_model, "lambda_text_feats") and loaded_model.pi_text_feats is not None and loaded_model.lambda_text_feats is not None: # For other CLIP-based models
image_feats = loaded_model.backbone(image_tensor)
# image_feats = F.normalize(image_feats.permute(0, 2, 3, 1), p=2, dim=-1) # shape (B, H, W, C)
pi_image_feats, lambda_image_feats = loaded_model.pi_head(image_feats), loaded_model.lambda_head(image_feats)
pi_image_feats = F.normalize(pi_image_feats.permute(0, 2, 3, 1), p=2, dim=-1) # shape (B, H, W, C)
lambda_image_feats = F.normalize(lambda_image_feats.permute(0, 2, 3, 1), p=2, dim=-1) # shape (B, H, W, C)
pi_text_feats, lambda_text_feats = loaded_model.pi_text_feats, loaded_model.lambda_text_feats
pi_logit_scale, lambda_logit_scale = loaded_model.pi_logit_scale.exp(), loaded_model.lambda_logit_scale.exp()
pi_logit_map = pi_logit_scale * pi_image_feats @ pi_text_feats.t() # (B, H, W, 2), logits per image
lambda_logit_map = lambda_logit_scale * lambda_image_feats @ lambda_text_feats.t() # (B, H, W, N - 1), logits per image
pi_logit_map = pi_logit_map.permute(0, 3, 1, 2) # (B, 2, H, W)
lambda_logit_map = lambda_logit_map.permute(0, 3, 1, 2) # (B, N - 1, H, W)
lambda_map = (lambda_logit_map.softmax(dim=1) * loaded_model.bin_centers[:, 1:]).sum(dim=1, keepdim=True) # (B, 1, H, W)
pi_map = pi_logit_map.softmax(dim=1)[:, 0:1] # (B, 1, H, W)
else: # For non-CLIP models
x = loaded_model.backbone(image_tensor)
logit_pi_map = loaded_model.pi_head(x) # shape: (B, 2, H, W)
logit_map = loaded_model.bin_head(x) # shape: (B, C, H, W)
lambda_map= (logit_map.softmax(dim=1) * loaded_model.bin_centers[:, 1:]).sum(dim=1, keepdim=True) # shape: (B, 1, H, W)
pi_map = logit_pi_map.softmax(dim=1)[:, 0:1] # shape: (B, 1, H, W)
den_map = (1.0 - pi_map) * lambda_map # shape: (B, 1, H, W)
count = den_map.sum().item()
strucrual_zero_map = F.interpolate(
pi_map, size=(input_height, input_width), mode="bilinear", align_corners=False, antialias=True
).cpu().squeeze().numpy()
lambda_map = F.interpolate(
lambda_map, size=(input_height, input_width), mode="bilinear", align_corners=False, antialias=True
).cpu().squeeze().numpy()
den_map = F.interpolate(
den_map, size=(input_height, input_width), mode="bilinear", align_corners=False, antialias=True
).cpu().squeeze().numpy()
sampling_zero_map = (1.0 - strucrual_zero_map) * np.exp(-lambda_map)
complete_zero_map = strucrual_zero_map + sampling_zero_map
# Normalize maps for display purposes
def normalize_map(x: np.ndarray) -> np.ndarray:
""" Normalize the map to [0, 1] range for visualization. """
x_min = np.min(x)
x_max = np.max(x)
if x_max - x_min < EPS:
return np.zeros_like(x)
return (x - x_min) / (x_max - x_min + EPS)
# strucrual_zero_map = normalize_map(strucrual_zero_map)
# sampling_zero_map = normalize_map(sampling_zero_map)
# lambda_map = normalize_map(lambda_map)
# den_map = normalize_map(den_map)
# complete_zero_map = normalize_map(complete_zero_map)
# Apply a colormap for better visualization
# Options: 'viridis', 'plasma', 'hot', 'inferno', 'jet' (recommended)
colormap = cm.get_cmap("jet")
# The colormap returns values in [0,1]. Scale to [0,255] and convert to uint8.
den_map = (colormap(den_map) * 255).astype(np.uint8)
strucrual_zero_map = (colormap(strucrual_zero_map) * 255).astype(np.uint8)
sampling_zero_map = (colormap(sampling_zero_map) * 255).astype(np.uint8)
lambda_map = (colormap(lambda_map) * 255).astype(np.uint8)
complete_zero_map = (colormap(complete_zero_map) * 255).astype(np.uint8)
# Convert to PIL images
den_map = Image.fromarray(den_map).convert("RGBA")
strucrual_zero_map = Image.fromarray(strucrual_zero_map).convert("RGBA")
sampling_zero_map = Image.fromarray(sampling_zero_map).convert("RGBA")
lambda_map = Image.fromarray(lambda_map).convert("RGBA")
complete_zero_map = Image.fromarray(complete_zero_map).convert("RGBA")
# Ensure the original image is in RGBA format.
image_rgba = image.convert("RGBA")
den_map = Image.blend(image_rgba, den_map, alpha=alpha)
strucrual_zero_map = Image.blend(image_rgba, strucrual_zero_map, alpha=alpha)
sampling_zero_map = Image.blend(image_rgba, sampling_zero_map, alpha=alpha)
lambda_map = Image.blend(image_rgba, lambda_map, alpha=alpha)
complete_zero_map = Image.blend(image_rgba, complete_zero_map, alpha=alpha)
# 格式化计数显示
count_display = f"👥 {round(count, 2)} people detected"
if count < 1:
count_display = "👤 Less than 1 person detected"
elif count == 1:
count_display = "👤 1 person detected"
elif count < 10:
count_display = f"👥 {round(count, 1)} people detected"
else:
count_display = f"👥 {round(count)} people detected"
return image, den_map, lambda_map, count_display, strucrual_zero_map, sampling_zero_map, complete_zero_map
# -----------------------------
# Build Gradio Interface using Blocks for a two-column layout
# -----------------------------
css = """
/* 分割线样式 - 灰色不可选择 */
.dropdown select option[value*="━━━━━━"] {
color: #999 !important;
background-color: #f0f0f0 !important;
font-style: italic !important;
text-align: center !important;
pointer-events: none !important;
cursor: not-allowed !important;
border: none !important;
}
/* Gradio下拉菜单中的分割线样式 */
.gr-dropdown .choices__item[data-value*="━━━━━━"] {
color: #999 !important;
background-color: #f0f0f0 !important;
font-style: italic !important;
text-align: center !important;
pointer-events: none !important;
cursor: not-allowed !important;
user-select: none !important;
opacity: 0.6 !important;
}
/* 悬停时保持灰色 */
.gr-dropdown .choices__item[data-value*="━━━━━━"]:hover {
background-color: #f0f0f0 !important;
color: #999 !important;
cursor: not-allowed !important;
}
/* 通用的分割线样式 */
option:disabled {
color: #999 !important;
background-color: #f0f0f0 !important;
font-style: italic !important;
}
/* 为包含分割线字符的选项添加样式 */
option[value*="━━━━━━"],
select option[value*="━━━━━━"] {
color: #999 !important;
background-color: #f0f0f0 !important;
cursor: not-allowed !important;
pointer-events: none !important;
text-align: center !important;
opacity: 0.6 !important;
}
/* 整体主题美化 */
.gradio-container {
max-width: 1600px !important;
margin: 0 auto !important;
font-family: 'Inter', -apple-system, BlinkMacSystemFont, sans-serif !important;
background: linear-gradient(135deg, #f5f7fa 0%, #c3cfe2 100%) !important;
min-height: 100vh !important;
padding: 20px !important;
}
/* 响应式布局 - 自动调整列宽 */
@media (max-width: 1400px) {
.gradio-container {
max-width: 1200px !important;
padding: 18px !important;
}
}
@media (max-width: 1200px) {
.gradio-container {
max-width: 100% !important;
padding: 16px !important;
}
/* 在中等屏幕上,将第二行改为垂直布局 */
.gr-row:nth-of-type(2) {
flex-direction: column !important;
}
.gr-row:nth-of-type(2) .gr-column {
width: 100% !important;
margin-bottom: 20px !important;
}
/* 重置中等屏幕上的组件高度 */
.gr-row:nth-of-type(2) .gr-group,
.gr-row:nth-of-type(3) .gr-group {
height: auto !important;
min-height: auto !important;
position: static !important;
}
.gr-row:nth-of-type(3) .gr-column:first-child .gr-group {
position: static !important;
}
.gr-row:nth-of-type(3) .gr-column:first-child .gr-button {
position: static !important;
bottom: auto !important;
left: auto !important;
right: auto !important;
width: auto !important;
margin-top: 16px !important;
}
}
@media (max-width: 900px) {
/* 在小屏幕上,将第三行也改为垂直布局 */
.gr-row:nth-of-type(3) {
flex-direction: column !important;
}
.gr-row:nth-of-type(3) .gr-column {
width: 100% !important;
margin-bottom: 20px !important;
}
/* Zero Analysis 在小屏幕上也改为垂直布局 */
.gr-group .gr-row {
flex-direction: column !important;
}
.gr-group .gr-row .gr-column {
width: 100% !important;
margin-bottom: 16px !important;
}
/* 重置小屏幕上的组件高度 */
.gr-row:nth-of-type(2) .gr-group,
.gr-row:nth-of-type(3) .gr-group {
height: auto !important;
min-height: auto !important;
position: static !important;
}
.gr-row:nth-of-type(3) .gr-column:first-child .gr-group {
position: static !important;
}
.gr-row:nth-of-type(3) .gr-column:first-child .gr-button {
position: static !important;
bottom: auto !important;
left: auto !important;
right: auto !important;
width: auto !important;
margin-top: 16px !important;
}
}
@media (max-width: 768px) {
.gradio-container {
padding: 12px !important;
}
.gr-column {
margin-bottom: 16px !important;
padding: 0 4px !important;
}
.gr-markdown h1 {
font-size: 2rem !important;
}
.gr-group {
padding: 16px !important;
}
.gr-button {
padding: 12px 24px !important;
font-size: 1rem !important;
}
/* 图像高度在小屏幕上调整 */
.gr-image {
height: 300px !important;
}
.zero-analysis-image {
height: 300px !important;
}
/* 小屏幕上重置组件高度 */
.gr-row:nth-of-type(2) .gr-group,
.gr-row:nth-of-type(3) .gr-group {
height: auto !important;
min-height: auto !important;
position: static !important;
}
.gr-row:nth-of-type(3) .gr-column:first-child .gr-group {
position: static !important;
}
.gr-row:nth-of-type(3) .gr-column:first-child .gr-button {
position: static !important;
bottom: auto !important;
left: auto !important;
right: auto !important;
width: auto !important;
margin-top: 16px !important;
}
.gr-row:nth-of-type(2) .gr-textbox,
.gr-row:nth-of-type(2) .gr-dropdown {
min-height: auto !important;
max-height: none !important;
}
.gr-row:nth-of-type(3) .gr-image {
height: 300px !important;
min-height: auto !important;
max-height: none !important;
flex: none !important;
}
}
/* 超宽屏幕优化 */
@media (min-width: 1600px) {
.gradio-container {
max-width: 1800px !important;
padding: 24px !important;
}
.gr-image {
height: 450px !important;
}
.zero-analysis-image {
height: 450px !important;
}
}
/* 标题样式 */
.gr-markdown h1 {
text-align: center !important;
color: #2563eb !important;
font-weight: 700 !important;
font-size: 3rem !important;
margin-bottom: 0.5rem !important;
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%) !important;
-webkit-background-clip: text !important;
-webkit-text-fill-color: transparent !important;
text-shadow: 0 4px 8px rgba(0,0,0,0.1) !important;
}
/* 副标题样式 */
.gr-markdown p {
text-align: center !important;
color: #6b7280 !important;
font-size: 1.2rem !important;
margin-bottom: 2rem !important;
font-weight: 500 !important;
}
/* 主要布局组美化 */
.gr-group {
background: rgba(255, 255, 255, 0.9) !important;
backdrop-filter: blur(10px) !important;
border-radius: 20px !important;
padding: 24px !important;
margin: 16px 0 !important;
box-shadow: 0 8px 32px rgba(0, 0, 0, 0.1) !important;
border: 1px solid rgba(255, 255, 255, 0.2) !important;
transition: all 0.3s ease !important;
}
.gr-group:hover {
transform: translateY(-4px) !important;
box-shadow: 0 12px 40px rgba(0, 0, 0, 0.15) !important;
}
/* 按钮美化 */
.gr-button {
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%) !important;
border: none !important;
border-radius: 12px !important;
color: white !important;
font-weight: 600 !important;
font-size: 1.1rem !important;
padding: 16px 32px !important;
transition: all 0.3s ease !important;
box-shadow: 0 6px 20px rgba(102, 126, 234, 0.3) !important;
text-transform: uppercase !important;
letter-spacing: 0.5px !important;
}
.gr-button:hover {
transform: translateY(-3px) !important;
box-shadow: 0 10px 30px rgba(102, 126, 234, 0.4) !important;
background: linear-gradient(135deg, #5a67d8 0%, #6b46c1 100%) !important;
}
/* 输入框样式 */
.gr-textbox, .gr-dropdown {
border-radius: 12px !important;
border: 2px solid #e5e7eb !important;
transition: all 0.3s ease !important;
background: rgba(255, 255, 255, 0.8) !important;
font-size: 1rem !important;
padding: 12px 16px !important;
}
.gr-textbox:focus, .gr-dropdown:focus {
border-color: #667eea !important;
box-shadow: 0 0 0 4px rgba(102, 126, 234, 0.1) !important;
background: rgba(255, 255, 255, 1) !important;
}
/* 图像容器美化 - 统一尺寸 */
.gr-image {
border-radius: 16px !important;
overflow: hidden !important;
box-shadow: 0 8px 25px rgba(0, 0, 0, 0.15) !important;
transition: all 0.3s ease !important;
background: white !important;
height: 400px !important;
width: 100% !important;
}
.gr-image:hover {
box-shadow: 0 15px 35px rgba(0, 0, 0, 0.2) !important;
transform: translateY(-2px) !important;
}
/* 确保第二行组件等高 - 重新调整为三列等宽 */
.gr-row:nth-of-type(2) .gr-group {
min-height: 180px !important;
display: flex !important;
flex-direction: column !important;
justify-content: center !important;
}
.gr-row:nth-of-type(2) .gr-group > * {
flex: 1 !important;
}
/* 确保第二行的文本框具有相同的高度 */
.gr-row:nth-of-type(2) .gr-textbox {
min-height: 100px !important;
max-height: 100px !important;
display: flex !important;
align-items: center !important;
}
/* 确保第二行下拉菜单区域等高 */
.gr-row:nth-of-type(2) .gr-dropdown {
min-height: 80px !important;
}
/* 确保下拉框可以正常展开 */
.gr-dropdown {
position: relative !important;
z-index: 1000 !important;
}
.gr-dropdown .choices {
position: absolute !important;
z-index: 1001 !important;
width: 100% !important;
max-height: 300px !important;
overflow-y: auto !important;
}
/* 确保第三行组件等高 - 重新调整高度 */
.gr-row:nth-of-type(3) .gr-group {
height: 520px !important;
min-height: 520px !important;
display: flex !important;
flex-direction: column !important;
justify-content: flex-start !important;
}
/* 第三行的图像容器统一高度 */
.gr-row:nth-of-type(3) .gr-image {
height: 400px !important;
min-height: 400px !important;
max-height: 400px !important;
flex: 0 0 400px !important;
}
/* 第三行的按钮固定在底部 - 只对第一列(Image Input)应用 */
.gr-row:nth-of-type(3) .gr-column:first-child .gr-group {
position: relative !important;
}
.gr-row:nth-of-type(3) .gr-column:first-child .gr-button {
position: absolute !important;
bottom: 24px !important;
left: 24px !important;
right: 24px !important;
margin: 0 !important;
width: calc(100% - 48px) !important;
}
/* 列间距优化 */
.gr-column {
padding: 0 8px !important;
margin-bottom: 16px !important;
}
/* 第二行特殊布局调整 - 移除,现在是三列等宽 */
.gr-row:nth-of-type(2) .gr-column {
padding: 0 8px !important;
}
/* 标签美化 */
.gr-label {
font-weight: 700 !important;
color: #374151 !important;
margin-bottom: 12px !important;
font-size: 1.1rem !important;
text-transform: uppercase !important;
letter-spacing: 0.5px !important;
}
/* 模型状态框特殊样式 */
.gr-textbox[data-testid*="model-status"] {
background: linear-gradient(135deg, #ecfdf5 0%, #d1fae5 100%) !important;
font-family: 'Monaco', 'Menlo', monospace !important;
font-size: 0.95rem !important;
font-weight: 600 !important;
border: 2px solid #10b981 !important;
}
/* Zero Analysis 特殊布局 */
.gr-row:has(.gr-image[label*="Zero"]) {
background: linear-gradient(135deg, rgba(255,255,255,0.95) 0%, rgba(248,250,252,0.95) 100%) !important;
border-radius: 20px !important;
padding: 24px !important;
margin: 20px 0 !important;
box-shadow: 0 10px 30px rgba(0, 0, 0, 0.1) !important;
}
/* Zero Analysis 图像特殊样式 - 统一尺寸 */
.zero-analysis-image {
border: 3px solid transparent !important;
background: linear-gradient(white, white) padding-box,
linear-gradient(135deg, #667eea, #764ba2) border-box !important;
border-radius: 16px !important;
transition: all 0.3s ease !important;
height: 400px !important;
width: 100% !important;
}
.zero-analysis-image:hover {
transform: scale(1.02) !important;
box-shadow: 0 12px 35px rgba(102, 126, 234, 0.2) !important;
}
/* 确保所有行的组件等高 */
.gr-row .gr-group {
min-height: 100% !important;
display: flex !important;
flex-direction: column !important;
}
.gr-row .gr-column {
height: 100% !important;
}
/* 第二行内部子行等高处理 - 移除,现在不需要内部子行 */
/* 统计信息卡片美化 */
.gr-textbox[label*="Count"] {
background: linear-gradient(135deg, #ecfcff 0%, #cffafe 100%) !important;
border: 2px solid #06b6d4 !important;
font-size: 1.2rem !important;
font-weight: 700 !important;
text-align: center !important;
color: #0e7490 !important;
}
/* 示例区域美化 */
.gr-examples {
background: linear-gradient(135deg, rgba(255,255,255,0.9) 0%, rgba(248,250,252,0.9) 100%) !important;
backdrop-filter: blur(10px) !important;
border-radius: 20px !important;
padding: 30px !important;
margin-top: 30px !important;
border: 1px solid rgba(255, 255, 255, 0.2) !important;
box-shadow: 0 10px 30px rgba(0, 0, 0, 0.1) !important;
}
/* Accordion 美化 */
.gr-accordion {
background: rgba(255, 255, 255, 0.8) !important;
border-radius: 16px !important;
margin: 16px 0 !important;
border: 1px solid rgba(255, 255, 255, 0.2) !important;
box-shadow: 0 6px 20px rgba(0, 0, 0, 0.08) !important;
}
/* 响应式设计 - 移除旧的媒体查询,已在上方重新定义 */
/* 加载动画 */
@keyframes pulse {
0%, 100% { opacity: 1; }
50% { opacity: 0.5; }
}
.gr-loading .gr-image {
animation: pulse 2s cubic-bezier(0.4, 0, 0.6, 1) infinite !important;
}
/* 成功状态指示 */
.status-success {
color: #059669 !important;
background-color: #d1fae5 !important;
border: 1px solid #a7f3d0 !important;
}
/* 错误状态指示 */
.status-error {
color: #dc2626 !important;
background-color: #fee2e2 !important;
border: 1px solid #fecaca !important;
}
"""
with gr.Blocks(css=css, theme=gr.themes.Soft(), title="ZIP Crowd Counting") as demo:
gr.Markdown("""
# 🎯 Crowd Counting by ZIP
### Upload an image and get precise crowd density predictions with ZIP models!
""")
# 添加信息面板
with gr.Accordion("ℹ️ About ZIP", open=False):
gr.Markdown("""
**ZIP (Zero-Inflated Poisson)** is a framework designed for crowd counting, a task where the goal is to estimate how many people are present in an image. It was introduced in the paper [ZIP: Scalable Crowd Counting via Zero-Inflated Poisson Modeling](https://arxiv.org/abs/2506.19955).
ZIP is based on a simple idea: not all empty areas in an image mean the same thing. Some regions are empty because there are truly no people there (like walls or sky), while others are places where people could appear but just happen not to in this particular image. ZIP separates these two cases using two prediction heads:
- **Structural Zeros**: These are regions that naturally never contain people (e.g., the background or torso areas). These are handled by the π head.
- **Sampling Zeros**: These are regions where people could appear but don't in this image. These are modeled by the λ head.
By separating *where* people are likely to be from *how many* are present, ZIP produces more accurate and interpretable crowd estimates, especially in scenes with large empty spaces or varied crowd densities.
Choose from different model variants: **ZIP-B** (Base), **ZIP-S** (Small), **ZIP-T** (Tiny), **ZIP-N** (Nano), **ZIP-P** (Pico)
""")
# 第二行:模型配置、状态和预测结果(三列等宽)
with gr.Row():
with gr.Column(scale=1):
with gr.Group():
model_dropdown = gr.Dropdown(
choices=pretrained_models,
value="ZIP-B @ NWPU-Crowd @ MAE",
label="🎛️ Select Model & Dataset",
info="Choose model variant, dataset, and evaluation metric"
)
with gr.Column(scale=1):
with gr.Group():
model_status = gr.Textbox(
label="📊 Model Status",
value="🔄 No model loaded",
interactive=False,
elem_classes=["status-display"],
lines=3
)
with gr.Column(scale=1):
with gr.Group():
output_text = gr.Textbox(
label="🧙 Predicted Count",
value="",
interactive=False,
info="Total number of people detected",
lines=3
)
# 第三行:主要图像(输入图像、密度图、Lambda图)
with gr.Row():
with gr.Column(scale=1):
with gr.Group():
input_img = gr.Image(
label="📸 Upload Image",
sources=["upload", "clipboard"],
type="pil",
height=400
)
submit_btn = gr.Button(
"🚀 Analyze Crowd",
variant="primary",
size="lg"
)
with gr.Column(scale=1):
with gr.Group():
output_den_map = gr.Image(
label="🎯 Predicted Density Map",
type="pil",
height=400
)
with gr.Column(scale=1):
with gr.Group():
output_lambda_map = gr.Image(
label="📈 Lambda Map",
type="pil",
height=400
)
# 第四行:Zero Analysis - 全宽,内部三列等宽
with gr.Group():
gr.Markdown("### 🔍 Zero Analysis")
gr.Markdown("*Explore different types of zero predictions in crowd analysis*")
with gr.Row():
with gr.Column(scale=1):
output_structural_zero_map = gr.Image(
label="🏗️ Structural Zero Map",
type="pil",
height=400,
elem_classes=["zero-analysis-image"]
)
with gr.Column(scale=1):
output_sampling_zero_map = gr.Image(
label="📊 Sampling Zero Map",
type="pil",
height=400,
elem_classes=["zero-analysis-image"]
)
with gr.Column(scale=1):
output_complete_zero_map = gr.Image(
label="👺 Complete Zero Map",
type="pil",
height=400,
elem_classes=["zero-analysis-image"]
)
# 当模型变化时,自动更新模型
def on_model_change(variant_dataset_metric):
# 如果选择的是分割线,保持当前选择不变
if "━━━━━━" in variant_dataset_metric:
return "⚠️ Please select a valid model configuration"
result = update_model_if_needed(variant_dataset_metric)
if "Model loaded:" in result:
return f"✅ {result}"
elif "Model already loaded:" in result:
return f"🔄 {result}"
else:
return f"❌ {result}"
model_dropdown.change(
fn=on_model_change,
inputs=[model_dropdown],
outputs=[model_status]
)
# 页面加载时设置默认模型配置(不在主进程中加载模型)
demo.load(
fn=lambda: f"✅ {update_model_if_needed('ZIP-B @ NWPU-Crowd @ MAE')}",
outputs=[model_status]
)
submit_btn.click(
fn=predict,
inputs=[input_img, model_dropdown],
outputs=[input_img, output_den_map, output_lambda_map, output_text, output_structural_zero_map, output_sampling_zero_map, output_complete_zero_map]
)
# 美化示例区域
with gr.Accordion("🖼️ Try Example Images", open=True):
gr.Markdown("**Click on any example below to test the model:**")
gr.Examples(
examples=[
["example1.jpg"], ["example2.jpg"], ["example3.jpg"], ["example4.jpg"],
["example5.jpg"], ["example6.jpg"], ["example7.jpg"], ["example8.jpg"],
["example9.jpg"], ["example10.jpg"], ["example11.jpg"], ["example12.jpg"]
],
inputs=input_img,
label="📚 Example Gallery",
examples_per_page=12
)
# 添加使用说明
with gr.Accordion("📖 How to Use", open=False):
gr.Markdown("""
### Step-by-step Guide:
1. **🎛️ Select Model**: Choose your preferred model variant, pre-trained dataset, and evaluation metric from the dropdown
2. **📸 Upload Image**: Click the image area to upload your crowd photo or use clipboard
3. **🚀 Analyze**: Click the "Analyze Crowd" button to start processing
4. **📊 View Results**: Examine the density maps and crowd count in the output panels
### Understanding the Outputs:
**📊 Main Results:**
- **🎯 Density Map**: Shows where people are located with color intensity, modeled by (1-π) * λ
- **🧙 Predicted Count**: Total number of people detected in the image
**🔍 Zero Analysis:**
- **🏗️ Structural Zero Map**: Indicates regions that structurally cannot contain head annotations (e.g., walls, sky, torso, or background). These are governed by the π head, which estimates the probability that a region never contains people.
- **📊 Sampling Zero Map**: Shows areas where people could be present but happen not to appear in the current image. These zeros are modeled by (1-π) * exp(-λ), where the expected count λ is near zero.
- **👺 Complete Zero Map**: A combined visualization of zero probabilities, capturing both structural and sampling zeros. This map reflects overall non-crowd likelihood per region.
**🔥 Hotspots:**
- **📈 Lambda Map**: Highlights areas with high expected crowd density. Each value represents the expected number of people in that region, modeled by the Poisson intensity (λ). This map focuses on *how many* people are likely to be present, **WITHOUT** assuming people could appear there. ⚠️ Lambda Map **NEEDS** to be combined with Structural Zero Map by (1-π) * λ to produce the final density map.
""")
# 添加技术信息
with gr.Accordion("🔬 Technical Details", open=False):
gr.Markdown("""
### Model Variants:
- **ZIP-B**: Base model with best performance
- **ZIP-S**: Small model for faster inference
- **ZIP-T**: Tiny model for resource-constrained environments
- **ZIP-N**: Nano model for mobile applications
- **ZIP-P**: Pico model for edge devices
### Datasets:
- **ShanghaiTech A**: Dense, low-resolution crowd scenes
- **ShanghaiTech B**: Sparse, high-resolution crowd scenes
- **UCF-QNRF**: Dense, ultra high-resolution crowd images
- **NWPU-Crowd**: Largest ultra high-resolution crowd counting dataset
### Metrics:
- **MAE**: Mean Absolute Error - average counting error
- **NAE**: Normalized Absolute Error - relative counting error
""")
demo.launch(
server_name="0.0.0.0",
server_port=7860,
show_api=False,
share=False
) |