Spaces:
Running
on
Zero
Running
on
Zero
File size: 33,764 Bytes
a7dedf9 bcf1a8b 277670a a7dedf9 0e1e36c ae09b40 e85ffa0 ae09b40 e85ffa0 ae09b40 e85ffa0 ae09b40 e85ffa0 ae09b40 0e1e36c a7dedf9 277670a e85ffa0 277670a e85ffa0 277670a e85ffa0 277670a 61ba3dd 277670a 61ba3dd 277670a 61ba3dd 277670a 61ba3dd 277670a a7dedf9 ccc542d a7dedf9 99459bc a7dedf9 8d8c6cc a7dedf9 e85ffa0 a7dedf9 277670a ef5adb7 61ba3dd e85ffa0 9cb167a e85ffa0 9cb167a e85ffa0 a7dedf9 ccc542d e85ffa0 9cb167a a7dedf9 61ba3dd ccc542d ae09b40 449e3d1 a7dedf9 9cb167a a7dedf9 b564f44 a7dedf9 9a7b741 a7dedf9 affc2a7 b564f44 a7dedf9 9cb167a a7dedf9 e85ffa0 dde77f8 9cb167a dde77f8 b564f44 dde77f8 b564f44 dde77f8 b564f44 dde77f8 b564f44 dde77f8 b564f44 dde77f8 b564f44 dde77f8 b564f44 dde77f8 b564f44 9cb167a e85ffa0 9cb167a 8994c36 9cb167a 8994c36 9cb167a 8994c36 9cb167a a7dedf9 4a2b023 a7dedf9 4a2b023 9cb167a 4a2b023 b564f44 4a2b023 b564f44 9cb167a b564f44 9cb167a b564f44 9cb167a 4a2b023 9cb167a b564f44 9cb167a b564f44 9cb167a b564f44 9cb167a b564f44 3b32643 b564f44 a7dedf9 e85ffa0 9cb167a 277670a e85ffa0 277670a 61ba3dd ef5adb7 61ba3dd ef5adb7 a7dedf9 e85ffa0 929bf51 a7dedf9 9cb167a 3b32643 9cb167a 11c9ec8 9cb167a 8994c36 9cb167a 3b32643 8994c36 b564f44 3b32643 8994c36 b564f44 3b32643 fe5f0a4 9cb167a 8994c36 9cb167a 8994c36 9cb167a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 |
import torch
from torch import nn
import torch.nn.functional as F
import torchvision.transforms.functional as TF
from torch import Tensor
import spaces
import numpy as np
from PIL import Image
import gradio as gr
from matplotlib import cm
from huggingface_hub import hf_hub_download
from warnings import warn
from models import get_model
mean = (0.485, 0.456, 0.406)
std = (0.229, 0.224, 0.225)
alpha = 0.8
EPS = 1e-8
loaded_model = None
current_model_config = {"variant": None, "dataset": None, "metric": None}
pretrained_models = [
"ZIP-B @ ShanghaiTech A @ MAE", "ZIP-B @ ShanghaiTech A @ NAE",
"ZIP-B @ ShanghaiTech B @ MAE", "ZIP-B @ ShanghaiTech B @ NAE",
"ZIP-B @ UCF-QNRF @ MAE", "ZIP-B @ UCF-QNRF @ NAE",
"ZIP-B @ NWPU-Crowd @ MAE", "ZIP-B @ NWPU-Crowd @ NAE",
"━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━",
"ZIP-S @ ShanghaiTech A @ MAE", "ZIP-S @ ShanghaiTech A @ NAE",
"ZIP-S @ ShanghaiTech B @ MAE", "ZIP-S @ ShanghaiTech B @ NAE",
"ZIP-S @ UCF-QNRF @ MAE", "ZIP-S @ UCF-QNRF @ NAE",
"━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━",
"ZIP-T @ ShanghaiTech A @ MAE", "ZIP-T @ ShanghaiTech A @ NAE",
"ZIP-T @ ShanghaiTech B @ MAE", "ZIP-T @ ShanghaiTech B @ NAE",
"ZIP-T @ UCF-QNRF @ MAE", "ZIP-T @ UCF-QNRF @ NAE",
"━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━",
"ZIP-N @ ShanghaiTech A @ MAE", "ZIP-N @ ShanghaiTech A @ NAE",
"ZIP-N @ ShanghaiTech B @ MAE", "ZIP-N @ ShanghaiTech B @ NAE",
"ZIP-N @ UCF-QNRF @ MAE", "ZIP-N @ UCF-QNRF @ NAE",
"━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━",
"ZIP-P @ ShanghaiTech A @ MAE", "ZIP-P @ ShanghaiTech A @ NAE",
"ZIP-P @ ShanghaiTech B @ MAE", "ZIP-P @ ShanghaiTech B @ NAE",
"ZIP-P @ UCF-QNRF @ MAE", "ZIP-P @ UCF-QNRF @ NAE",
]
# -----------------------------
# Model management functions
# -----------------------------
def update_model_if_needed(variant_dataset_metric: str):
"""
Load a new model only if the configuration has changed.
"""
global loaded_model, current_model_config
# 如果是分割线,则跳过
if "━━━━━━" in variant_dataset_metric:
return "Please select a valid model configuration"
parts = variant_dataset_metric.split(" @ ")
if len(parts) != 3:
return "Invalid model configuration format"
variant, dataset, metric = parts[0], parts[1], parts[2].lower()
if dataset == "ShanghaiTech A":
dataset_name = "sha"
elif dataset == "ShanghaiTech B":
dataset_name = "shb"
elif dataset == "UCF-QNRF":
dataset_name = "qnrf"
elif dataset == "NWPU-Crowd":
dataset_name = "nwpu"
else:
return f"Unknown dataset: {dataset}"
# 只更新配置,不在主进程中加载模型
if (current_model_config["variant"] != variant or
current_model_config["dataset"] != dataset_name or
current_model_config["metric"] != metric):
print(f"Model configuration updated: {variant} @ {dataset} with {metric} metric")
current_model_config = {"variant": variant, "dataset": dataset_name, "metric": metric}
loaded_model = None # 重置模型,将在GPU进程中重新加载
return f"Model configuration set: {variant} @ {dataset} ({metric})"
else:
print(f"Model configuration unchanged: {variant} @ {dataset} with {metric} metric")
return f"Model configuration: {variant} @ {dataset} ({metric})"
# -----------------------------
# Define the model architecture
# -----------------------------
def load_model(variant: str, dataset: str = "ShanghaiTech B", metric: str = "mae"):
""" Load the model weights from the Hugging Face Hub."""
# global loaded_model
# Build model
model_info_path = hf_hub_download(
repo_id=f"Yiming-M/{variant}",
filename=f"checkpoints/{dataset}/best_{metric}.pth",
)
model = get_model(model_info_path=model_info_path)
model.eval()
# loaded_model = model
return model
def _calc_size(
img_w: int,
img_h: int,
min_size: int,
max_size: int,
base: int = 32
):
"""
This function generates a new size for an image while keeping the aspect ratio. The new size should be within the given range (min_size, max_size).
Args:
img_w (int): The width of the image.
img_h (int): The height of the image.
min_size (int): The minimum size of the edges of the image.
max_size (int): The maximum size of the edges of the image.
# base (int): The base number to which the new size should be a multiple of.
"""
assert min_size % base == 0, f"min_size ({min_size}) must be a multiple of {base}"
if max_size != float("inf"):
assert max_size % base == 0, f"max_size ({max_size}) must be a multiple of {base} if provided"
assert min_size <= max_size, f"min_size ({min_size}) must be less than or equal to max_size ({max_size})"
aspect_ratios = (img_w / img_h, img_h / img_w)
if min_size / max_size <= min(aspect_ratios) <= max(aspect_ratios) <= max_size / min_size: # possible to resize and preserve the aspect ratio
if min_size <= min(img_w, img_h) <= max(img_w, img_h) <= max_size: # already within the range, no need to resize
ratio = 1.
elif min(img_w, img_h) < min_size: # smaller than the minimum size, resize to the minimum size
ratio = min_size / min(img_w, img_h)
else: # larger than the maximum size, resize to the maximum size
ratio = max_size / max(img_w, img_h)
new_w, new_h = int(round(img_w * ratio / base) * base), int(round(img_h * ratio / base) * base)
new_w = max(min_size, min(max_size, new_w))
new_h = max(min_size, min(max_size, new_h))
return new_w, new_h
else: # impossible to resize and preserve the aspect ratio
msg = f"Impossible to resize {img_w}x{img_h} image while preserving the aspect ratio to a size within the range ({min_size}, {max_size}). Will not limit the maximum size."
warn(msg)
return _calc_size(img_w, img_h, min_size, float("inf"), base)
# -----------------------------
# Preprocessing function
# -----------------------------
# Adjust the image transforms to match what your model expects.
def transform(image: Image.Image, dataset_name: str) -> Tensor:
assert isinstance(image, Image.Image), "Input must be a PIL Image"
image_tensor = TF.to_tensor(image)
if dataset_name == "sha":
min_size = 448
max_size = float("inf")
elif dataset_name == "shb":
min_size = 448
max_size = float("inf")
elif dataset_name == "qnrf":
min_size = 448
max_size = 2048
elif dataset_name == "nwpu":
min_size = 448
max_size = 3072
image_height, image_width = image_tensor.shape[-2:]
new_width, new_height = _calc_size(
img_w=image_width,
img_h=image_height,
min_size=min_size,
max_size=max_size,
base=32
)
if new_height != image_height or new_width != image_width:
image_tensor = TF.resize(image_tensor, size=(new_height, new_width), interpolation=TF.InterpolationMode.BICUBIC, antialias=True)
image_tensor = TF.normalize(image_tensor, mean=mean, std=std)
return image_tensor.unsqueeze(0) # Add batch dimension
def _sliding_window_predict(
model: nn.Module,
image: Tensor,
window_size: int,
stride: int,
max_num_windows: int = 256
):
assert len(image.shape) == 4, f"Image must be a 4D tensor (1, c, h, w), got {image.shape}"
window_size = (int(window_size), int(window_size)) if isinstance(window_size, (int, float)) else window_size
stride = (int(stride), int(stride)) if isinstance(stride, (int, float)) else stride
window_size = tuple(window_size)
stride = tuple(stride)
assert isinstance(window_size, tuple) and len(window_size) == 2 and window_size[0] > 0 and window_size[1] > 0, f"Window size must be a positive integer tuple (h, w), got {window_size}"
assert isinstance(stride, tuple) and len(stride) == 2 and stride[0] > 0 and stride[1] > 0, f"Stride must be a positive integer tuple (h, w), got {stride}"
assert stride[0] <= window_size[0] and stride[1] <= window_size[1], f"Stride must be smaller than window size, got {stride} and {window_size}"
image_height, image_width = image.shape[-2:]
window_height, window_width = window_size
assert image_height >= window_height and image_width >= window_width, f"Image size must be larger than window size, got image size {image.shape} and window size {window_size}"
stride_height, stride_width = stride
num_rows = int(np.ceil((image_height - window_height) / stride_height) + 1)
num_cols = int(np.ceil((image_width - window_width) / stride_width) + 1)
if hasattr(model, "block_size"):
block_size = model.block_size
elif hasattr(model, "module") and hasattr(model.module, "block_size"):
block_size = model.module.block_size
else:
raise ValueError("Model must have block_size attribute")
assert window_height % block_size == 0 and window_width % block_size == 0, f"Window size must be divisible by block size, got {window_size} and {block_size}"
windows = []
for i in range(num_rows):
for j in range(num_cols):
x_start, y_start = i * stride_height, j * stride_width
x_end, y_end = x_start + window_height, y_start + window_width
if x_end > image_height:
x_start, x_end = image_height - window_height, image_height
if y_end > image_width:
y_start, y_end = image_width - window_width, image_width
window = image[:, :, x_start:x_end, y_start:y_end]
windows.append(window)
windows = torch.cat(windows, dim=0).to(image.device) # batched windows, shape: (num_windows, c, h, w)
model.eval()
pi_maps, lambda_maps = [], []
for i in range(0, len(windows), max_num_windows):
with torch.no_grad():
image_feats = model.backbone(windows[i: min(i + max_num_windows, len(windows))])
pi_image_feats, lambda_image_feats = model.pi_head(image_feats), model.lambda_head(image_feats)
pi_image_feats = F.normalize(pi_image_feats.permute(0, 2, 3, 1), p=2, dim=-1) # shape (B, H, W, C)
lambda_image_feats = F.normalize(lambda_image_feats.permute(0, 2, 3, 1), p=2, dim=-1) # shape (B, H, W, C)
pi_text_feats, lambda_text_feats = model.pi_text_feats, model.lambda_text_feats
pi_logit_scale, lambda_logit_scale = model.pi_logit_scale.exp(), model.lambda_logit_scale.exp()
pi_logit_map = pi_logit_scale * pi_image_feats @ pi_text_feats.t() # (B, H, W, 2), logits per image
lambda_logit_map = lambda_logit_scale * lambda_image_feats @ lambda_text_feats.t() # (B, H, W, N - 1), logits per image
pi_logit_map = pi_logit_map.permute(0, 3, 1, 2) # (B, 2, H, W)
lambda_logit_map = lambda_logit_map.permute(0, 3, 1, 2) # (B, N - 1, H, W)
lambda_map = (lambda_logit_map.softmax(dim=1) * model.bin_centers[:, 1:]).sum(dim=1, keepdim=True) # (B, 1, H, W)
pi_map = pi_logit_map.softmax(dim=1)[:, 0:1] # (B, 1, H, W)
pi_maps.append(pi_map.cpu().numpy())
lambda_maps.append(lambda_map.cpu().numpy())
# assemble the density map
pi_maps = np.concatenate(pi_maps, axis=0) # shape: (num_windows, 1, H, W)
lambda_maps = np.concatenate(lambda_maps, axis=0) # shape: (num_windows, 1, H, W)
assert pi_maps.shape == lambda_maps.shape, f"pi_maps and lambda_maps must have the same shape, got {pi_maps.shape} and {lambda_maps.shape}"
pi_map = np.zeros((pi_maps.shape[1], image_height // block_size, image_width // block_size), dtype=np.float32)
lambda_map = np.zeros((lambda_maps.shape[1], image_height // block_size, image_width // block_size), dtype=np.float32)
count_map = np.zeros((pi_maps.shape[1], image_height // block_size, image_width // block_size), dtype=np.float32)
idx = 0
for i in range(num_rows):
for j in range(num_cols):
x_start, y_start = i * stride_height, j * stride_width
x_end, y_end = x_start + window_height, y_start + window_width
if x_end > image_height:
x_start, x_end = image_height - window_height, image_height
if y_end > image_width:
y_start, y_end = image_width - window_width, image_width
pi_map[:, (x_start // block_size): (x_end // block_size), (y_start // block_size): (y_end // block_size)] += pi_maps[idx, :, :, :]
lambda_map[:, (x_start // block_size): (x_end // block_size), (y_start // block_size): (y_end // block_size)] += lambda_maps[idx, :, :, :]
count_map[:, (x_start // block_size): (x_end // block_size), (y_start // block_size): (y_end // block_size)] += 1.
idx += 1
# average the density map
pi_map /= count_map
lambda_map /= count_map
# convert to Tensor and reshape
pi_map = torch.from_numpy(pi_map).unsqueeze(0) # shape: (1, 1, H // block_size, W // block_size)
lambda_map = torch.from_numpy(lambda_map).unsqueeze(0) # shape: (1, 1, H // block_size, W // block_size)
return pi_map, lambda_map
# -----------------------------
# Inference function
# -----------------------------
@spaces.GPU(duration=120)
def predict(image: Image.Image, variant_dataset_metric: str):
"""
Given an input image, preprocess it, run the model to obtain a density map,
compute the total crowd count, and prepare the density map for display.
"""
global loaded_model, current_model_config
# 在GPU进程中定义device
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# 如果选择的是分割线,返回错误信息
if "━━━━━━" in variant_dataset_metric:
return image, None, None, "⚠️ Please select a valid model configuration", None, None, None
parts = variant_dataset_metric.split(" @ ")
if len(parts) != 3:
return image, None, None, "❌ Invalid model configuration format", None, None, None
variant, dataset, metric = parts[0], parts[1], parts[2].lower()
if dataset == "ShanghaiTech A":
dataset_name = "sha"
elif dataset == "ShanghaiTech B":
dataset_name = "shb"
elif dataset == "UCF-QNRF":
dataset_name = "qnrf"
elif dataset == "NWPU-Crowd":
dataset_name = "nwpu"
else:
return image, None, None, f"❌ Unknown dataset: {dataset}", None, None, None
# 在GPU进程中加载模型(如果需要)
if (loaded_model is None or
current_model_config["variant"] != variant or
current_model_config["dataset"] != dataset_name or
current_model_config["metric"] != metric):
print(f"Loading model in GPU process: {variant} @ {dataset} with {metric} metric")
loaded_model = load_model(variant=variant, dataset=dataset_name, metric=metric)
current_model_config = {"variant": variant, "dataset": dataset_name, "metric": metric}
if not hasattr(loaded_model, "input_size"):
if dataset_name == "sha":
loaded_model.input_size = 224
elif dataset_name == "shb":
loaded_model.input_size = 448
elif dataset_name == "qnrf":
loaded_model.input_size = 672
elif dataset_name == "nwpu":
loaded_model.input_size = 672
elif isinstance(loaded_model.input_size, (list, tuple)):
loaded_model.input_size = loaded_model.input_size[0] # Use the first element if it's a list or tuple
else:
assert isinstance(loaded_model.input_size, (int, float)), f"input_size must be an int or float, got {type(loaded_model.input_size)}"
loaded_model.to(device)
# Preprocess the image
input_width, input_height = image.size
image_tensor = transform(image, dataset_name).to(device) # shape: (1, 3, H, W)
input_size = loaded_model.input_size
image_height, image_width = image_tensor.shape[-2:]
aspect_ratio = image_width / image_height
if image_height < input_size:
new_height = input_size
new_width = int(new_height * aspect_ratio)
image_tensor = F.interpolate(image_tensor, size=(new_height, new_width), mode="bicubic", align_corners=False, antialias=True)
image_height, image_width = new_height, new_width
if image_width < input_size:
new_width = input_size
new_height = int(new_width / aspect_ratio)
image_tensor = F.interpolate(image_tensor, size=(new_height, new_width), mode="bicubic", align_corners=False, antialias=True)
image_height, image_width = new_height, new_width
with torch.no_grad():
if hasattr(loaded_model, "num_vpt") and loaded_model.num_vpt is not None and loaded_model.num_vpt > 0: # For ViT models, use sliding window prediction
# For ViT models with VPT
pi_map, lambda_map = _sliding_window_predict(
model=loaded_model,
image=image_tensor,
window_size=input_size,
stride=input_size
)
elif hasattr(loaded_model, "pi_text_feats") and hasattr(loaded_model, "lambda_text_feats") and loaded_model.pi_text_feats is not None and loaded_model.lambda_text_feats is not None: # For other CLIP-based models
image_feats = loaded_model.backbone(image_tensor)
# image_feats = F.normalize(image_feats.permute(0, 2, 3, 1), p=2, dim=-1) # shape (B, H, W, C)
pi_image_feats, lambda_image_feats = loaded_model.pi_head(image_feats), loaded_model.lambda_head(image_feats)
pi_image_feats = F.normalize(pi_image_feats.permute(0, 2, 3, 1), p=2, dim=-1) # shape (B, H, W, C)
lambda_image_feats = F.normalize(lambda_image_feats.permute(0, 2, 3, 1), p=2, dim=-1) # shape (B, H, W, C)
pi_text_feats, lambda_text_feats = loaded_model.pi_text_feats, loaded_model.lambda_text_feats
pi_logit_scale, lambda_logit_scale = loaded_model.pi_logit_scale.exp(), loaded_model.lambda_logit_scale.exp()
pi_logit_map = pi_logit_scale * pi_image_feats @ pi_text_feats.t() # (B, H, W, 2), logits per image
lambda_logit_map = lambda_logit_scale * lambda_image_feats @ lambda_text_feats.t() # (B, H, W, N - 1), logits per image
pi_logit_map = pi_logit_map.permute(0, 3, 1, 2) # (B, 2, H, W)
lambda_logit_map = lambda_logit_map.permute(0, 3, 1, 2) # (B, N - 1, H, W)
lambda_map = (lambda_logit_map.softmax(dim=1) * loaded_model.bin_centers[:, 1:]).sum(dim=1, keepdim=True) # (B, 1, H, W)
pi_map = pi_logit_map.softmax(dim=1)[:, 0:1] # (B, 1, H, W)
else: # For non-CLIP models
x = loaded_model.backbone(image_tensor)
logit_pi_map = loaded_model.pi_head(x) # shape: (B, 2, H, W)
logit_map = loaded_model.bin_head(x) # shape: (B, C, H, W)
lambda_map= (logit_map.softmax(dim=1) * loaded_model.bin_centers[:, 1:]).sum(dim=1, keepdim=True) # shape: (B, 1, H, W)
pi_map = logit_pi_map.softmax(dim=1)[:, 0:1] # shape: (B, 1, H, W)
den_map = (1.0 - pi_map) * lambda_map # shape: (B, 1, H, W)
count = den_map.sum().item()
strucrual_zero_map = F.interpolate(
pi_map, size=(input_height, input_width), mode="bilinear", align_corners=False, antialias=True
).cpu().squeeze().numpy()
lambda_map = F.interpolate(
lambda_map, size=(input_height, input_width), mode="bilinear", align_corners=False, antialias=True
).cpu().squeeze().numpy()
den_map = F.interpolate(
den_map, size=(input_height, input_width), mode="bilinear", align_corners=False, antialias=True
).cpu().squeeze().numpy()
sampling_zero_map = (1.0 - strucrual_zero_map) * np.exp(-lambda_map)
complete_zero_map = strucrual_zero_map + sampling_zero_map
# Normalize maps for display purposes
def normalize_map(x: np.ndarray) -> np.ndarray:
""" Normalize the map to [0, 1] range for visualization. """
x_min = np.min(x)
x_max = np.max(x)
if x_max - x_min < EPS:
return np.zeros_like(x)
return (x - x_min) / (x_max - x_min + EPS)
# strucrual_zero_map = normalize_map(strucrual_zero_map)
# sampling_zero_map = normalize_map(sampling_zero_map)
# lambda_map = normalize_map(lambda_map)
# den_map = normalize_map(den_map)
# complete_zero_map = normalize_map(complete_zero_map)
# Apply a colormap for better visualization
# Options: 'viridis', 'plasma', 'hot', 'inferno', 'jet' (recommended)
colormap = cm.get_cmap("jet")
# The colormap returns values in [0,1]. Scale to [0,255] and convert to uint8.
den_map = (colormap(den_map) * 255).astype(np.uint8)
strucrual_zero_map = (colormap(strucrual_zero_map) * 255).astype(np.uint8)
sampling_zero_map = (colormap(sampling_zero_map) * 255).astype(np.uint8)
lambda_map = (colormap(lambda_map) * 255).astype(np.uint8)
complete_zero_map = (colormap(complete_zero_map) * 255).astype(np.uint8)
# Convert to PIL images
den_map = Image.fromarray(den_map).convert("RGBA")
strucrual_zero_map = Image.fromarray(strucrual_zero_map).convert("RGBA")
sampling_zero_map = Image.fromarray(sampling_zero_map).convert("RGBA")
lambda_map = Image.fromarray(lambda_map).convert("RGBA")
complete_zero_map = Image.fromarray(complete_zero_map).convert("RGBA")
# Ensure the original image is in RGBA format.
image_rgba = image.convert("RGBA")
den_map = Image.blend(image_rgba, den_map, alpha=alpha)
strucrual_zero_map = Image.blend(image_rgba, strucrual_zero_map, alpha=alpha)
sampling_zero_map = Image.blend(image_rgba, sampling_zero_map, alpha=alpha)
lambda_map = Image.blend(image_rgba, lambda_map, alpha=alpha)
complete_zero_map = Image.blend(image_rgba, complete_zero_map, alpha=alpha)
# 格式化计数显示
count_display = f"👥 {round(count, 2)} people detected"
if count < 1:
count_display = "👤 Less than 1 person detected"
elif count == 1:
count_display = "👤 1 person detected"
elif count < 10:
count_display = f"👥 {round(count, 1)} people detected"
else:
count_display = f"👥 {round(count)} people detected"
return image, den_map, lambda_map, count_display, strucrual_zero_map, sampling_zero_map, complete_zero_map
# -----------------------------
# Build Gradio Interface using Blocks for a two-column layout
# -----------------------------
css = """
/* 基础样式 - 保持功能性 */
.gradio-container {
max-width: 1600px;
margin: 0 auto;
padding: 20px;
}
/* 简单的分割线样式 */
option[value*="━━━━━━"] {
color: #999;
background-color: #f0f0f0;
text-align: center;
}
/* 基础组件样式 */
.gr-group {
background: white;
border-radius: 8px;
padding: 16px;
margin: 8px 0;
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
}
.gr-button {
background: #3b82f6;
color: white;
border: none;
border-radius: 6px;
padding: 12px 24px;
font-weight: 600;
}
.gr-image {
border-radius: 8px;
height: 400px;
}
/* 响应式设计 */
@media (max-width: 768px) {
.gradio-container {
padding: 12px;
}
.gr-image {
height: 300px;
}
}
"""
with gr.Blocks(css=css, theme=gr.themes.Soft(), title="ZIP Crowd Counting") as demo:
gr.Markdown("""
# 🎯 Crowd Counting by ZIP
### Upload an image and get precise crowd density predictions with ZIP models!
""")
# 添加信息面板
with gr.Accordion("ℹ️ About ZIP", open=False):
gr.Markdown("""
**ZIP (Zero-Inflated Poisson)** is a framework designed for crowd counting, a task where the goal is to estimate how many people are present in an image. It was introduced in the paper [ZIP: Scalable Crowd Counting via Zero-Inflated Poisson Modeling](https://arxiv.org/abs/2506.19955).
ZIP is based on a simple idea: not all empty areas in an image mean the same thing. Some regions are empty because there are truly no people there (like walls or sky), while others are places where people could appear but just happen not to in this particular image. ZIP separates these two cases using two prediction heads:
- **Structural Zeros**: These are regions that naturally never contain people (e.g., the background or torso areas). These are handled by the π head.
- **Sampling Zeros**: These are regions where people could appear but don't in this image. These are modeled by the λ head.
By separating *where* people are likely to be from *how many* are present, ZIP produces more accurate and interpretable crowd estimates, especially in scenes with large empty spaces or varied crowd densities.
Choose from different model variants: **ZIP-B** (Base), **ZIP-S** (Small), **ZIP-T** (Tiny), **ZIP-N** (Nano), **ZIP-P** (Pico)
""")
# 第二行:模型配置、状态和预测结果(三列等宽)
with gr.Row():
with gr.Column(scale=1):
with gr.Group():
model_dropdown = gr.Dropdown(
choices=pretrained_models,
value="ZIP-B @ NWPU-Crowd @ MAE",
label="🎛️ Select Model & Dataset",
info="Choose model variant, dataset, and evaluation metric"
)
with gr.Column(scale=1):
with gr.Group():
model_status = gr.Textbox(
label="📊 Model Status",
value="🔄 No model loaded",
interactive=False,
elem_classes=["status-display"],
lines=3
)
with gr.Column(scale=1):
with gr.Group():
output_text = gr.Textbox(
label="🧙 Predicted Count",
value="",
interactive=False,
info="Total number of people detected",
lines=3
)
# 第三行:主要图像(输入图像、密度图、Lambda图)
with gr.Row():
with gr.Column(scale=1):
with gr.Group():
input_img = gr.Image(
label="📸 Upload Image",
sources=["upload", "clipboard"],
type="pil",
height=400
)
submit_btn = gr.Button(
"🚀 Analyze Crowd",
variant="primary",
size="lg"
)
with gr.Column(scale=1):
with gr.Group():
output_den_map = gr.Image(
label="🎯 Predicted Density Map",
type="pil",
height=400
)
with gr.Column(scale=1):
with gr.Group():
output_lambda_map = gr.Image(
label="📈 Lambda Map",
type="pil",
height=400
)
# 第四行:Zero Analysis - 全宽,内部三列等宽
with gr.Group():
gr.Markdown("### 🔍 Zero Analysis")
gr.Markdown("*Explore different types of zero predictions in crowd analysis*")
with gr.Row():
with gr.Column(scale=1):
output_structural_zero_map = gr.Image(
label="🏗️ Structural Zero Map",
type="pil",
height=400,
elem_classes=["zero-analysis-image"]
)
with gr.Column(scale=1):
output_sampling_zero_map = gr.Image(
label="📊 Sampling Zero Map",
type="pil",
height=400,
elem_classes=["zero-analysis-image"]
)
with gr.Column(scale=1):
output_complete_zero_map = gr.Image(
label="👺 Complete Zero Map",
type="pil",
height=400,
elem_classes=["zero-analysis-image"]
)
# 当模型变化时,自动更新模型
def on_model_change(variant_dataset_metric):
# 如果选择的是分割线,保持当前选择不变
if "━━━━━━" in variant_dataset_metric:
return "⚠️ Please select a valid model configuration"
result = update_model_if_needed(variant_dataset_metric)
if "Model loaded:" in result:
return f"✅ {result}"
elif "Model already loaded:" in result:
return f"🔄 {result}"
else:
return f"❌ {result}"
model_dropdown.change(
fn=on_model_change,
inputs=[model_dropdown],
outputs=[model_status]
)
# 页面加载时设置默认模型配置(不在主进程中加载模型)
demo.load(
fn=lambda: f"✅ {update_model_if_needed('ZIP-B @ NWPU-Crowd @ MAE')}",
outputs=[model_status]
)
submit_btn.click(
fn=predict,
inputs=[input_img, model_dropdown],
outputs=[input_img, output_den_map, output_lambda_map, output_text, output_structural_zero_map, output_sampling_zero_map, output_complete_zero_map]
)
# 美化示例区域
with gr.Accordion("🖼️ Try Example Images", open=True):
gr.Markdown("**Click on any example below to test the model:**")
gr.Examples(
examples=[
["example1.jpg"], ["example2.jpg"], ["example3.jpg"], ["example4.jpg"],
["example5.jpg"], ["example6.jpg"], ["example7.jpg"], ["example8.jpg"],
["example9.jpg"], ["example10.jpg"], ["example11.jpg"], ["example12.jpg"]
],
inputs=input_img,
label="📚 Example Gallery",
examples_per_page=12
)
# 添加使用说明
with gr.Accordion("📖 How to Use", open=False):
gr.Markdown("""
### Step-by-step Guide:
1. **🎛️ Select Model**: Choose your preferred model variant, pre-trained dataset, and evaluation metric from the dropdown
2. **📸 Upload Image**: Click the image area to upload your crowd photo or use clipboard
3. **🚀 Analyze**: Click the "Analyze Crowd" button to start processing
4. **📊 View Results**: Examine the density maps and crowd count in the output panels
### Understanding the Outputs:
**📊 Main Results:**
- **🎯 Density Map**: Shows where people are located with color intensity, modeled by (1-π) * λ
- **🧙 Predicted Count**: Total number of people detected in the image
**🔍 Zero Analysis:**
- **🏗️ Structural Zero Map**: Indicates regions that structurally cannot contain head annotations (e.g., walls, sky, torso, or background). These are governed by the π head, which estimates the probability that a region never contains people.
- **📊 Sampling Zero Map**: Shows areas where people could be present but happen not to appear in the current image. These zeros are modeled by (1-π) * exp(-λ), where the expected count λ is near zero.
- **👺 Complete Zero Map**: A combined visualization of zero probabilities, capturing both structural and sampling zeros. This map reflects overall non-crowd likelihood per region.
**🔥 Hotspots:**
- **📈 Lambda Map**: Highlights areas with high expected crowd density. Each value represents the expected number of people in that region, modeled by the Poisson intensity (λ). This map focuses on *how many* people are likely to be present, **WITHOUT** assuming people could appear there. ⚠️ Lambda Map **NEEDS** to be combined with Structural Zero Map by (1-π) * λ to produce the final density map.
""")
# 添加技术信息
with gr.Accordion("🔬 Technical Details", open=False):
gr.Markdown("""
### Model Variants:
- **ZIP-B**: Base model with best performance
- **ZIP-S**: Small model for faster inference
- **ZIP-T**: Tiny model for resource-constrained environments
- **ZIP-N**: Nano model for mobile applications
- **ZIP-P**: Pico model for edge devices
### Datasets:
- **ShanghaiTech A**: Dense, low-resolution crowd scenes
- **ShanghaiTech B**: Sparse, high-resolution crowd scenes
- **UCF-QNRF**: Dense, ultra high-resolution crowd images
- **NWPU-Crowd**: Largest ultra high-resolution crowd counting dataset
### Metrics:
- **MAE**: Mean Absolute Error - average counting error
- **NAE**: Normalized Absolute Error - relative counting error
""")
demo.launch(
server_name="0.0.0.0",
server_port=7860,
show_api=False,
share=False
) |