File size: 7,279 Bytes
a7dedf9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a5dc50a
227d44e
a7dedf9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
from torch import nn, Tensor
import open_clip
from peft import get_peft_model, LoraConfig 

from ..utils import ConvRefine, ConvAdapter
from ..utils import ConvUpsample, _get_norm_layer, _get_activation


convnext_names_and_weights = {
    "convnext_base": ["laion400m_s13b_b51k"],  # 107.49M
    "convnext_base_w": ["laion2b_s13b_b82k", "laion2b_s13b_b82k_augreg", "laion_aesthetic_s13b_b82k"],  # 107.75M
    "convnext_base_w_320": ["laion_aesthetic_s13b_b82k", "laion_aesthetic_s13b_b82k_augreg"],  # 107.75M
    "convnext_large_d": ["laion2b_s26b_b102k_augreg"],  # 217.46M
    "convnext_large_d_320": ["laion2b_s29b_b131k_ft", "laion2b_s29b_b131k_ft_soup"],  # 217.46M
    "convnext_xxlarge": ["laion2b_s34b_b82k_augreg", "laion2b_s34b_b82k_augreg_rewind", "laion2b_s34b_b82k_augreg_soup"]  # 896.88M
}

refiner_channels = {
    "convnext_base": 1024,
    "convnext_base_w": 1024,
    "convnext_base_w_320": 1024,
    "convnext_large_d": 1536,
    "convnext_large_d_320": 1536,
    "convnext_xxlarge": 3072,
}

refiner_groups = {
    "convnext_base": 1,
    "convnext_base_w": 1,
    "convnext_base_w_320": 1,
    "convnext_large_d": refiner_channels["convnext_large_d"] // 512,  # 3
    "convnext_large_d_320": refiner_channels["convnext_large_d_320"] // 512,  # 3
    "convnext_xxlarge": refiner_channels["convnext_xxlarge"] // 512,  # 6
}



class ConvNeXt(nn.Module):
    def __init__(
        self,
        model_name: str,
        weight_name: str,
        block_size: int = 16,
        adapter: bool = False,
        adapter_reduction: int = 4,
        norm: str = "none",
        act: str = "none"
    ) -> None:
        super(ConvNeXt, self).__init__()
        assert model_name in convnext_names_and_weights, f"Model name should be one of {list(convnext_names_and_weights.keys())}, but got {model_name}."
        assert weight_name in convnext_names_and_weights[model_name], f"Pretrained should be one of {convnext_names_and_weights[model_name]}, but got {weight_name}."
        assert block_size in [32, 16, 8], f"block_size should be one of [32, 16, 8], got {block_size}"
        self.model_name, self.weight_name = model_name, weight_name
        self.block_size = block_size

        # model = open_clip.create_model_from_pretrained(model_name, weight_name, return_transform=False).visual
        model = open_clip.create_model(model_name=model_name, pretrained=False, load_weights=False).visual

        self.adapter = adapter
        if adapter:
            self.adapter_reduction = adapter_reduction
            for param in model.parameters():
                param.requires_grad = False
        
        self.stem = model.trunk.stem
        self.depth = len(model.trunk.stages)
        for idx, stage in enumerate(model.trunk.stages):
            setattr(self, f"stage{idx}", stage)
            if adapter:
                setattr(self, f"adapter{idx}", ConvAdapter(
                    in_channels=stage.blocks[-1].mlp.fc2.out_features,
                    bottleneck_channels=stage.blocks[-1].mlp.fc2.out_features // adapter_reduction,
                ) if idx < self.depth - 1 else nn.Identity())  # No adapter for the last stage

        if self.model_name in ["convnext_base", "convnext_base_w", "convnext_base_w_320", "convnext_xxlarge"]:
            self.in_features, self.out_features = model.head.proj.in_features, model.head.proj.out_features
        else:  # "convnext_large_d", "convnext_large_d_320":
            self.in_features, self.out_features = model.head.mlp.fc1.in_features, model.head.mlp.fc2.out_features

        if norm == "bn":
            norm_layer = nn.BatchNorm2d
        elif norm == "ln":
            norm_layer = nn.LayerNorm
        else:
            norm_layer = _get_norm_layer(model)
        
        if act == "relu":
            activation = nn.ReLU(inplace=True)
        elif act == "gelu":
            activation = nn.GELU()
        else:
            activation = _get_activation(model)
        
        if block_size == 32:
            self.refiner = ConvRefine(
                in_channels=self.in_features,
                out_channels=self.in_features,
                norm_layer=norm_layer,
                activation=activation,
                groups=refiner_groups[self.model_name],
            )
        elif block_size == 16:
            self.refiner = ConvUpsample(
                in_channels=self.in_features,
                out_channels=self.in_features,
                norm_layer=norm_layer,
                activation=activation,
                groups=refiner_groups[self.model_name],
            )
        else:  # block_size == 8
            self.refiner = nn.Sequential(
                ConvUpsample(
                    in_channels=self.in_features,
                    out_channels=self.in_features,
                    norm_layer=norm_layer,
                    activation=activation,
                    groups=refiner_groups[self.model_name],
                ),
                ConvUpsample(
                    in_channels=self.in_features,
                    out_channels=self.in_features,
                    norm_layer=norm_layer,
                    activation=activation,
                    groups=refiner_groups[self.model_name],
                ),
            )

    def train(self, mode: bool = True):
        if self.adapter and mode:
            # training:
            self.stem.eval()
    
            for idx in range(self.depth):
                getattr(self, f"stage{idx}").eval()
                getattr(self, f"adapter{idx}").train()

            self.refiner.train()

        else:
            # evaluation:
            for module in self.children():
                module.train(mode)

    def forward(self, x: Tensor) -> Tensor:
        x = self.stem(x)

        for idx in range(self.depth):
            x = getattr(self, f"stage{idx}")(x)
            if self.adapter:
                x = getattr(self, f"adapter{idx}")(x)

        x = self.refiner(x)
        return x


def _convnext(
    model_name: str,
    weight_name: str,
    block_size: int = 16,
    adapter: bool = False,
    adapter_reduction: int = 4,
    lora: bool = False,
    lora_rank: int = 16,
    lora_alpha: float = 32.0,
    lora_dropout: float = 0.1,
    norm: str = "none",
    act: str = "none"
) -> ConvNeXt:
    assert not (lora and adapter), "Lora and adapter cannot be used together."
    model = ConvNeXt(
        model_name=model_name,
        weight_name=weight_name,
        block_size=block_size,
        adapter=adapter,
        adapter_reduction=adapter_reduction,
        norm=norm,
        act=act
    )

    if lora:
        target_modules = []
        for name, module in model.named_modules():
            if isinstance(module, (nn.Linear, nn.Conv2d)) and "refiner" not in name:
                target_modules.append(name)
        
        lora_config = LoraConfig(
            r=lora_rank,
            lora_alpha=lora_alpha,
            lora_dropout=lora_dropout,
            bias="none",
            target_modules=target_modules,
        )
        model = get_peft_model(model, lora_config)

        # Unfreeze refiner
        for name, module in model.named_modules():
            if "refiner" in name:
                module.requires_grad_(True)
    
    return model