Spaces:
Running
on
Zero
Running
on
Zero
File size: 14,287 Bytes
a7dedf9 a5dc50a 227d44e a7dedf9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 |
import torch
from torch import nn, Tensor
import math
from einops import rearrange
import open_clip
from peft import get_peft_model, LoraConfig
from typing import Optional, Tuple
from ..utils import interpolate_pos_embed, ViTAdapter
# from ..utils import TransformerRefine, TransformerDownsample, TransformerUpsample
from ..utils import ConvRefine, ConvDownsample, ConvUpsample
from ..utils import _get_norm_layer, _get_activation
vit_names_and_weights = {
"ViT-B-32": [
"openai",
"laion400m_e31", "laion400m_e32", "laion2b_e16", "laion2b_s34b_b79k",
"datacomp_xl_s13b_b90k", "datacomp_m_s128m_b4k", "datacomp_s_s13m_b4k",
"commonpool_m_clip_s128m_b4k", "commonpool_m_laion_s128m_b4k", "commonpool_m_image_s128m_b4k", "commonpool_m_text_s128m_b4k", "commonpool_m_basic_s128m_b4k", "commonpool_m_s128m_b4k",
"commonpool_s_clip_s13m_b4k", "commonpool_s_laion_s13m_b4k", "commonpool_s_image_s13m_b4k", "commonpool_s_text_s13m_b4k", "commonpool_s_basic_s13m_b4k", "commonpool_s_s13m_b4k",
],
"ViT-B_32-256": ["datacomp_s34b_b86k"],
"ViT-B-16": [
"openai",
"laion400m_e31", "laion400m_e32", "laion2b_s34b_b88k",
"datacomp_xl_s13b_b90k", "datacomp_l_s1b_b8k",
"commonpool_l_clip_s1b_b8k", "commonpool_l_laion_s1b_b8k", "commonpool_l_image_s1b_b8k", "commonpool_l_text_s1b_b8k", "commonpool_l_basic_s1b_b8k", "commonpool_l_s1b_b8k",
"dfn2b"
],
"ViT-L-14": [
"openai",
"laion400m_e31", "laion400m_e32", "laion2b_s32b_b82k",
"datacomp_xl_s13b_b90k",
"commonpool_xl_clip_s13b_b90k", "commonpool_xl_laion_s13b_b90k", "commonpool_xl_s13b_b90k"
],
"ViT-L-14-336": ["openai"],
"ViT-H-14": ["laion2b_s32b_b79k"],
"ViT-g-14": ["laion2b_s12b_b42k", "laion2b_s34b_b88k"],
"ViT-bigG-14": ["laion2b_s39b_b160k"],
}
refiner_channels = {
"ViT-B-32": 768,
"ViT-B-32-256": 768,
"ViT-B-16": 768,
"ViT-L-14": 1024,
"ViT-L-14-336": 1024,
"ViT-H-14": 1280,
"ViT-g-14": 1408,
"ViT-bigG-14": 1664,
}
refiner_groups = {
"ViT-B-32": 1,
"ViT-B-32-256": 1,
"ViT-B-16": 1,
"ViT-L-14": 1,
"ViT-L-14-336": 1,
"ViT-H-14": 1,
"ViT-g-14": refiner_channels["ViT-g-14"] // 704, # 2
"ViT-bigG-14": refiner_channels["ViT-bigG-14"] // 416, # 4
}
class ViT(nn.Module):
def __init__(
self,
model_name: str,
weight_name: str,
block_size: int = 16,
num_vpt: int = 32,
vpt_drop: float = 0.0,
adapter: bool = False,
adapter_reduction: int = 4,
input_size: Optional[Tuple[int, int]] = None,
norm: str = "none",
act: str = "none"
) -> None:
super(ViT, self).__init__()
assert model_name in vit_names_and_weights, f"Model name should be one of {list(vit_names_and_weights.keys())}, but got {model_name}."
assert weight_name in vit_names_and_weights[model_name], f"Pretrained should be one of {vit_names_and_weights[model_name]}, but got {weight_name}."
if adapter:
assert num_vpt is None or num_vpt == 0, "num_vpt should be None or 0 when using adapter."
assert vpt_drop is None or vpt_drop == 0.0, "vpt_drop should be None or 0.0 when using adapter."
else:
assert num_vpt > 0, f"Number of VPT tokens should be greater than 0, but got {num_vpt}."
assert 0.0 <= vpt_drop < 1.0, f"VPT dropout should be in [0.0, 1.0), but got {vpt_drop}."
self.model_name, self.weight_name = model_name, weight_name
self.block_size = block_size
self.num_vpt = num_vpt
self.vpt_drop = vpt_drop
self.adapter = adapter
# model = open_clip.create_model_from_pretrained(model_name, weight_name, return_transform=False).visual
model = open_clip.create_model(model_name=model_name, pretrained=False, load_weights=False).visual
# Always freeze the parameters of the model
for param in model.parameters():
param.requires_grad = False
# Setup the model
self.input_size = input_size if input_size is not None else model.image_size
self.pretrain_size = model.image_size
self.patch_size = model.patch_size
self.class_embedding = model.class_embedding
self.positional_embedding = model.positional_embedding
self.embed_dim = model.class_embedding.shape[-1]
self.conv1 = model.conv1
self.ln_pre = model.ln_pre
self.resblocks = model.transformer.resblocks
self.num_layers = len(self.resblocks)
self.ln_post = model.ln_post
# Setup VPT tokens
val = math.sqrt(6. / float(3 * self.patch_size[0] + self.embed_dim))
for idx in range(self.num_layers):
if self.adapter:
setattr(self, f"adapter{idx}", ViTAdapter(
in_channels=self.embed_dim,
bottleneck_channels=self.embed_dim // adapter_reduction,
))
else:
setattr(self, f"vpt_{idx}", nn.Parameter(torch.empty(self.num_vpt, self.embed_dim)))
nn.init.uniform_(getattr(self, f"vpt_{idx}"), -val, val)
setattr(self, f"vpt_drop_{idx}", nn.Dropout(self.vpt_drop))
# Adjust the positional embedding to match the new input size
self._adjust_pos_embed()
in_features, out_features = model.proj.shape
self.in_features = in_features
self.out_features = out_features
patch_size = self.patch_size[0]
if patch_size in [16, 32]:
assert block_size in [8, 16, 32], f"Patch size is 32, but got block size {block_size}."
else: # patch_size == 14
assert block_size in [7, 14, 28], f"Patch size is 14, but got block size {block_size}."
if norm == "bn":
norm_layer = nn.BatchNorm2d
elif norm == "ln":
norm_layer = nn.LayerNorm
else:
norm_layer = _get_norm_layer(model)
if act == "relu":
activation = nn.ReLU(inplace=True)
elif act == "gelu":
activation = nn.GELU()
else:
activation = _get_activation(model)
if block_size == patch_size:
self.refiner = ConvRefine(
in_channels=self.in_features,
out_channels=self.in_features,
norm_layer=norm_layer,
activation=activation,
groups=refiner_groups[self.model_name],
)
elif block_size < patch_size: # upsample
if block_size == 8 and patch_size == 32:
self.refiner = nn.Sequential(
ConvUpsample(
in_channels=self.in_features,
out_channels=self.in_features,
norm_layer=norm_layer,
activation=activation,
groups=refiner_groups[self.model_name],
),
ConvUpsample(
in_channels=self.in_features,
out_channels=self.in_features,
norm_layer=norm_layer,
activation=activation,
groups=refiner_groups[self.model_name],
),
)
else:
self.refiner = ConvUpsample(
in_channels=self.in_features,
out_channels=self.in_features,
norm_layer=norm_layer,
activation=activation,
groups=refiner_groups[self.model_name],
)
else: # downsample
assert block_size // patch_size == 2, f"Block size {block_size} should be 2 times the patch size {patch_size}."
self.refiner = ConvDownsample(
in_channels=self.in_features,
out_channels=self.in_features,
norm_layer=norm_layer,
activation=activation,
groups=refiner_groups[self.model_name],
)
def _adjust_pos_embed(self) -> Tensor:
"""
Adjust the positional embedding to match the spatial resolution of the feature map.
Args:
orig_h, orig_w: The original spatial resolution of the image.
new_h, new_w: The new spatial resolution of the image.
"""
self.positional_embedding = nn.Parameter(self._interpolate_pos_embed(self.pretrain_size[0], self.pretrain_size[1], self.input_size[0], self.input_size[1]), requires_grad=False)
def _interpolate_pos_embed(self, orig_h: int, orig_w: int, new_h: int, new_w: int) -> Tensor:
"""
Interpolate the positional embedding to match the spatial resolution of the feature map.
Args:
orig_h, orig_w: The original spatial resolution of the image.
new_h, new_w: The new spatial resolution of the image.
"""
if (orig_h, orig_w) == (new_h, new_w):
return self.positional_embedding
orig_h_patches, orig_w_patches = orig_h // self.patch_size[0], orig_w // self.patch_size[1]
new_h_patches, new_w_patches = new_h // self.patch_size[0], new_w // self.patch_size[1]
class_pos_embed, patch_pos_embed = self.positional_embedding[:1, :], self.positional_embedding[1:, :]
patch_pos_embed = rearrange(patch_pos_embed, "(h w) d -> d h w", h=orig_h_patches, w=orig_w_patches)
patch_pos_embed = interpolate_pos_embed(patch_pos_embed, size=(new_h_patches, new_w_patches))
patch_pos_embed = rearrange(patch_pos_embed, "d h w -> (h w) d")
pos_embed = torch.cat((class_pos_embed, patch_pos_embed), dim=0)
return pos_embed
def train(self, mode: bool = True):
if mode:
# training:
self.conv1.eval()
self.ln_pre.eval()
self.resblocks.eval()
self.ln_post.eval()
for idx in range(self.num_layers):
getattr(self, f"vpt_drop_{idx}").train()
self.refiner.train()
else:
# evaluation:
for module in self.children():
module.train(mode)
def _prepare_vpt(self, layer: int, batch_size: int, device: torch.device) -> Tensor:
vpt = getattr(self, f"vpt_{layer}").unsqueeze(0).expand(batch_size, -1, -1).to(device) # (batch_size, num_vpt, embed_dim)
vpt = getattr(self, f"vpt_drop_{layer}")(vpt)
return vpt
def _forward_patch_embed(self, x: Tensor) -> Tensor:
# This step performs 1) embed x into patches; 2) append the class token; 3) add positional embeddings.
assert len(x.shape) == 4, f"Expected input to have shape (batch_size, 3, height, width), but got {x.shape}"
batch_size, _, height, width = x.shape
# Step 1: Embed x into patches
x = self.conv1(x)
# Step 2: Append the class token
class_embedding = self.class_embedding.expand(batch_size, 1, -1)
x = rearrange(x, "b d h w -> b (h w) d")
x = torch.cat([class_embedding, x], dim=1)
# Step 3: Add positional embeddings
pos_embed = self._interpolate_pos_embed(orig_h=self.input_size[0], orig_w=self.input_size[1], new_h=height, new_w=width).expand(batch_size, -1, -1)
x = x + pos_embed
x = self.ln_pre(x)
return x
def _forward_vpt(self, x: Tensor, idx: int) -> Tensor:
batch_size = x.shape[0]
device = x.device
# Assemble
vpt = self._prepare_vpt(idx, batch_size, device)
x = torch.cat([
x[:, :1, :], # class token
vpt,
x[:, 1:, :] # patches
], dim=1)
# Forward
x = self.resblocks[idx](x)
# Disassemble
x = torch.cat([
x[:, :1, :], # class token
x[:, 1 + self.num_vpt:, :] # patches
], dim=1)
return x
def _forward_adapter(self, x: Tensor, idx: int) -> Tensor:
return getattr(self, f"adapter{idx}")(x)
def forward_encoder(self, x: Tensor) -> Tensor:
x = self._forward_patch_embed(x)
for idx in range(self.num_layers):
x = self._forward_adapter(x, idx) if self.adapter else self._forward_vpt(x, idx)
x = self.ln_post(x)
return x
def forward(self, x: Tensor) -> Tensor:
orig_h, orig_w = x.shape[-2:]
num_patches_h, num_patches_w = orig_h // self.patch_size[0], orig_w // self.patch_size[1]
x = self.forward_encoder(x)
x = x[:, 1:, :] # remove the class token
x = rearrange(x, "b (h w) d -> b d h w", h=num_patches_h, w=num_patches_w)
x = self.refiner(x)
return x
def _vit(
model_name: str,
weight_name: str,
block_size: int = 16,
num_vpt: int = 32,
vpt_drop: float = 0.1,
adapter: bool = False,
adapter_reduction: int = 4,
lora: bool = False,
lora_rank: int = 16,
lora_alpha: float = 32.0,
lora_dropout: float = 0.1,
input_size: Optional[Tuple[int, int]] = None,
norm: str = "none",
act: str = "none"
) -> ViT:
assert not (lora and adapter), "LoRA and adapter cannot be used together."
model = ViT(
model_name=model_name,
weight_name=weight_name,
block_size=block_size,
num_vpt=num_vpt,
vpt_drop=vpt_drop,
adapter=adapter,
adapter_reduction=adapter_reduction,
input_size=input_size,
norm=norm,
act=act
)
if lora:
target_modules = []
for name, module in model.named_modules():
if isinstance(module, (nn.Linear, nn.Conv2d, nn.MultiheadAttention)) and "refiner" not in name:
target_modules.append(name)
lora_config = LoraConfig(
r=lora_rank,
lora_alpha=lora_alpha,
lora_dropout=lora_dropout,
bias="none",
target_modules=target_modules,
)
model = get_peft_model(model, lora_config)
# Unfreeze refiner
for name, module in model.named_modules():
if "refiner" in name:
module.requires_grad_(True)
return model
|