File size: 7,085 Bytes
a7dedf9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a5dc50a
 
a7dedf9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
import timm
import torch.nn.functional as F
from torch import nn, Tensor
from functools import partial
from typing import Optional

from ..utils import ConvRefine, _get_norm_layer, _get_activation


available_hrnets = [
    "hrnet_w18", "hrnet_w18_small", "hrnet_w18_small_v2",
    "hrnet_w30", "hrnet_w32", "hrnet_w40", "hrnet_w44", "hrnet_w48", "hrnet_w64",
]


class HRNet(nn.Module):
    def __init__(
        self,
        model_name: str,
        block_size: Optional[int] = None,
        norm: str = "none",
        act: str = "none"
    ) -> None:
        super().__init__()
        assert model_name in available_hrnets, f"Model name should be one of {available_hrnets}"
        assert block_size is None or block_size in [8, 16, 32], f"block_size should be one of [8, 16, 32], but got {block_size}."
        self.model_name = model_name
        self.block_size = block_size if block_size is not None else 32

        # model = timm.create_model(model_name, pretrained=True)
        model = timm.create_model(model_name, pretrained=False)

        self.conv1 = model.conv1
        self.bn1 = model.bn1
        self.act1 = model.act1
        self.conv2 = model.conv2
        self.bn2 = model.bn2
        self.act2 = model.act2

        self.layer1 = model.layer1

        self.transition1 = model.transition1
        self.stage2 = model.stage2

        self.transition2 = model.transition2
        self.stage3 = model.stage3

        self.transition3 = model.transition3
        self.stage4 = model.stage4

        incre_modules = model.incre_modules
        downsamp_modules = model.downsamp_modules

        assert len(incre_modules) == 4, f"Expected 4 incre_modules, got {len(self.incre_modules)}"
        assert len(downsamp_modules) == 3, f"Expected 3 downsamp_modules, got {len(self.downsamp_modules)}"

        self.out_channels_4 = incre_modules[0][0].downsample[0].out_channels
        self.out_channels_8 = incre_modules[1][0].downsample[0].out_channels
        self.out_channels_16 = incre_modules[2][0].downsample[0].out_channels
        self.out_channels_32 = incre_modules[3][0].downsample[0].out_channels

        if self.block_size == 8:
            self.encoder_reduction = 8
            self.encoder_channels = self.out_channels_8
            self.incre_modules = incre_modules[:2]
            self.downsamp_modules = downsamp_modules[:1]

            self.refiner = nn.Identity()
            self.refiner_reduction = 8
            self.refiner_channels = self.out_channels_8
        
        elif self.block_size == 16:
            self.encoder_reduction = 16
            self.encoder_channels = self.out_channels_16
            self.incre_modules = incre_modules[:3]
            self.downsamp_modules = downsamp_modules[:2]

            self.refiner = nn.Identity()
            self.refiner_reduction = 16
            self.refiner_channels = self.out_channels_16

        else:  # self.block_size == 32
            self.encoder_reduction = 32
            self.encoder_channels = self.out_channels_32
            self.incre_modules = incre_modules
            self.downsamp_modules = downsamp_modules

            self.refiner = nn.Identity()
            self.refiner_reduction = 32
            self.refiner_channels = self.out_channels_32

        # define the decoder
        if self.refiner_channels <= 512:
            groups = 1
        elif self.refiner_channels <= 1024:
            groups = 2
        elif self.refiner_channels <= 2048:
            groups = 4
        else:
            groups = 8
        
        if norm == "bn":
            norm_layer = nn.BatchNorm2d
        elif norm == "ln":
            norm_layer = nn.LayerNorm
        else:
            norm_layer = _get_norm_layer(model)

        if act == "relu":
            activation = nn.ReLU(inplace=True)
        elif act == "gelu":
            activation = nn.GELU()
        else:
            activation = _get_activation(model)
        
        decoder_block = partial(ConvRefine, groups=groups, norm_layer=norm_layer, activation=activation)
        if self.refiner_channels <= 256:
            self.decoder = nn.Identity()
            self.decoder_channels = self.refiner_channels
        elif self.refiner_channels <= 512:
            self.decoder = decoder_block(self.refiner_channels, self.refiner_channels // 2)
            self.decoder_channels = self.refiner_channels // 2
        elif self.refiner_channels <= 1024:
            self.decoder = nn.Sequential(
                decoder_block(self.refiner_channels, self.refiner_channels // 2),
                decoder_block(self.refiner_channels // 2, self.refiner_channels // 4),
            )
            self.decoder_channels = self.refiner_channels // 4
        else:
            self.decoder = nn.Sequential(
                decoder_block(self.refiner_channels, self.refiner_channels // 2),
                decoder_block(self.refiner_channels // 2, self.refiner_channels // 4),
                decoder_block(self.refiner_channels // 4, self.refiner_channels // 8),
            )
            self.decoder_channels = self.refiner_channels // 8
        
        self.decoder_reduction = self.refiner_reduction

    def _interpolate(self, x: Tensor) -> Tensor:
        # This method adjust the spatial dimensions of the input tensor so that it can be divided by 32.
        if x.shape[-1] % 32 != 0 or x.shape[-2] % 32 != 0:
            new_h = int(round(x.shape[-2] / 32) * 32)
            new_w = int(round(x.shape[-1] / 32) * 32)
            return F.interpolate(x, size=(new_h, new_w), mode="bicubic", align_corners=False)
        
        return x


    def encode(self, x: Tensor) -> Tensor:
        x = self.conv1(x)
        x = self.bn1(x)
        x = self.act1(x)

        x = self.conv2(x)
        x = self.bn2(x)
        x = self.act2(x)

        x = self.layer1(x)

        x = [t(x) for t in self.transition1]
        x = self.stage2(x)

        x = [t(x[-1]) if not isinstance(t, nn.Identity) else x[i] for i, t in enumerate(self.transition2)]
        x = self.stage3(x)

        x = [t(x[-1]) if not isinstance(t, nn.Identity) else x[i] for i, t in enumerate(self.transition3)]
        x = self.stage4(x)

        assert len(x) == 4, f"Expected 4 outputs, got {len(x)}"

        feats = None
        for i, incre in enumerate(self.incre_modules):
            if feats is None:
                feats = incre(x[i])
            else:
                down = self.downsamp_modules[i - 1]  # needed for torchscript module indexing
                feats = incre(x[i]) + down.forward(feats)
        
        return feats

    def refine(self, x: Tensor) -> Tensor:
        return self.refiner(x)
    
    def decode(self, x: Tensor) -> Tensor:
        return self.decoder(x)
    
    def forward(self, x: Tensor) -> Tensor:
        x = self._interpolate(x)
        x = self.encode(x)
        x = self.refine(x)
        x = self.decode(x)
        return x


def _hrnet(model_name: str, block_size: Optional[int] = None, norm: str = "none", act: str = "none") -> HRNet:
    return HRNet(model_name, block_size, norm, act)