File size: 8,789 Bytes
a7dedf9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a5dc50a
a7dedf9
 
 
 
a5dc50a
a7dedf9
 
 
 
a5dc50a
a7dedf9
 
 
 
a5dc50a
a7dedf9
 
 
 
a5dc50a
a7dedf9
 
 
 
a5dc50a
a7dedf9
 
 
 
a5dc50a
a7dedf9
 
 
 
a5dc50a
a7dedf9
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
from torch import nn, Tensor
from torch.hub import load_state_dict_from_url
from typing import Optional

from .utils import make_vgg_layers, vgg_cfgs, vgg_urls
from ..utils import _init_weights, _get_norm_layer, _get_activation
from ..utils import  ConvDownsample, ConvUpsample


vgg_models = [
    "vgg11", "vgg11_bn",
    "vgg13", "vgg13_bn",
    "vgg16", "vgg16_bn",
    "vgg19", "vgg19_bn",
]

decoder_cfg = [512, 256, 128]


class VGGEncoder(nn.Module):
    def __init__(
        self,
        model_name: str,
        block_size: Optional[int] = None,
        norm: str = "none",
        act: str = "none",
    ) -> None:
        super().__init__()
        assert model_name in vgg_models, f"Model name should be one of {vgg_models}, but got {model_name}."
        assert block_size is None or block_size in [8, 16, 32], f"Block size should be one of [8, 16, 32], but got {block_size}."
        self.model_name = model_name

        if model_name == "vgg11":
            self.encoder = vgg11()
        elif model_name == "vgg11_bn":
            self.encoder = vgg11_bn()
        elif model_name == "vgg13":
            self.encoder = vgg13()
        elif model_name == "vgg13_bn":
            self.encoder = vgg13_bn()
        elif model_name == "vgg16":
            self.encoder = vgg16()
        elif model_name == "vgg16_bn":
            self.encoder = vgg16_bn()
        elif model_name == "vgg19":
            self.encoder = vgg19()
        else:  # model_name == "vgg19_bn"
            self.encoder = vgg19_bn()
        
        self.encoder_channels = 512
        self.encoder_reduction = 16
        self.block_size = block_size if block_size is not None else self.encoder_reduction

        if norm == "bn":
            norm_layer = nn.BatchNorm2d
        elif norm == "ln":
            norm_layer = nn.LayerNorm
        else:
            norm_layer = _get_norm_layer(self.encoder)
        
        if act == "relu":
            activation = nn.ReLU(inplace=True)
        elif act == "gelu":
            activation = nn.GELU()
        else:
            activation = _get_activation(self.encoder)
        
        if self.encoder_reduction >= self.block_size:  # 8, 16
            self.refiner = ConvUpsample(
                in_channels=self.encoder_channels,
                out_channels=self.encoder_channels,
                scale_factor=self.encoder_reduction // self.block_size,
                norm_layer=norm_layer,
                activation=activation,
            )
        else: # 32
            self.refiner = ConvDownsample(
                in_channels=self.encoder_channels,
                out_channels=self.encoder_channels,
                norm_layer=norm_layer,
                activation=activation,
            )
        self.refiner_channels = self.encoder_channels
        self.refiner_reduction = self.block_size

        self.decoder = nn.Identity()
        self.decoder_channels = self.encoder_channels
        self.decoder_reduction = self.refiner_reduction
    
    def encode(self, x: Tensor) -> Tensor:
        return self.encoder(x)
    
    def refine(self, x: Tensor) -> Tensor:
        return self.refiner(x)
    
    def decode(self, x: Tensor) -> Tensor:
        return self.decoder(x)
    
    def forward(self, x: Tensor) -> Tensor:
        x = self.encode(x)
        x = self.refine(x)
        x = self.decode(x)
        return x


class VGGEncoderDecoder(nn.Module):
    def __init__(
        self,
        model_name: str,
        block_size: Optional[int] = None,
        norm: str = "none",
        act: str = "none",
    ) -> None:
        super().__init__()
        assert model_name in vgg_models, f"Model name should be one of {vgg_models}, but got {model_name}."
        assert block_size is None or block_size in [8, 16, 32], f"Block size should be one of [8, 16, 32], but got {block_size}."
        self.model_name = model_name

        if model_name == "vgg11":
            encoder = vgg11()
        elif model_name == "vgg11_bn":
            encoder = vgg11_bn()
        elif model_name == "vgg13":
            encoder = vgg13()
        elif model_name == "vgg13_bn":
            encoder = vgg13_bn()
        elif model_name == "vgg16":
            encoder = vgg16()
        elif model_name == "vgg16_bn":
            encoder = vgg16_bn()
        elif model_name == "vgg19":
            encoder = vgg19()
        else:  # model_name == "vgg19_bn"
            encoder = vgg19_bn()
        
        encoder_channels = 512
        encoder_reduction = 16
        decoder = make_vgg_layers(decoder_cfg, in_channels=encoder_channels, batch_norm="bn" in model_name, dilation=1)
        decoder.apply(_init_weights)

        if norm == "bn":
            norm_layer = nn.BatchNorm2d
        elif norm == "ln":
            norm_layer = nn.LayerNorm
        else:
            norm_layer = _get_norm_layer(encoder)
        
        if act == "relu":
            activation = nn.ReLU(inplace=True)
        elif act == "gelu":
            activation = nn.GELU()
        else:
            activation = _get_activation(encoder)

        self.encoder = nn.Sequential(encoder, decoder)
        self.encoder_channels = decoder_cfg[-1]
        self.encoder_reduction = encoder_reduction
        self.block_size = block_size if block_size is not None else self.encoder_reduction
        
        if self.encoder_reduction >= self.block_size:
            self.refiner = ConvUpsample(
                in_channels=self.encoder_channels,
                out_channels=self.encoder_channels,
                scale_factor=self.encoder_reduction // self.block_size,
                norm_layer=norm_layer,
                activation=activation,
            )
        else:
            self.refiner = ConvDownsample(
                in_channels=self.encoder_channels,
                out_channels=self.encoder_channels,
                norm_layer=norm_layer,
                activation=activation,
            )
        self.refiner_channels = self.encoder_channels
        self.refiner_reduction = self.block_size

        self.decoder = nn.Identity()
        self.decoder_channels = self.refiner_channels
        self.decoder_reduction = self.refiner_reduction

    def encode(self, x: Tensor) -> Tensor:
        return self.encoder(x)
    
    def refine(self, x: Tensor) -> Tensor:
        return self.refiner(x)
    
    def decode(self, x: Tensor) -> Tensor:
        return self.decoder(x)

    def forward(self, x: Tensor) -> Tensor:
        x = self.encode(x)
        x = self.refine(x)
        x = self.decode(x)
        return x


class VGG(nn.Module):
    def __init__(
        self,
        features: nn.Module,
    ) -> None:
        super().__init__()
        self.features = features

    def forward(self, x: Tensor) -> Tensor:
        x = self.features(x)
        return x


def vgg11() -> VGG:
    model = VGG(make_vgg_layers(vgg_cfgs["A"]))
    # model.load_state_dict(state_dict=load_state_dict_from_url(vgg_urls["vgg11"]), strict=False)
    return model

def vgg11_bn() -> VGG:
    model = VGG(make_vgg_layers(vgg_cfgs["A"], batch_norm=True))
    # model.load_state_dict(state_dict=load_state_dict_from_url(vgg_urls["vgg11_bn"]), strict=False)
    return model

def vgg13() -> VGG:
    model = VGG(make_vgg_layers(vgg_cfgs["B"]))
    # model.load_state_dict(state_dict=load_state_dict_from_url(vgg_urls["vgg13"]), strict=False)
    return model

def vgg13_bn() -> VGG:
    model = VGG(make_vgg_layers(vgg_cfgs["B"], batch_norm=True))
    # model.load_state_dict(state_dict=load_state_dict_from_url(vgg_urls["vgg13_bn"]), strict=False)
    return model

def vgg16() -> VGG:
    model = VGG(make_vgg_layers(vgg_cfgs["D"]))
    # model.load_state_dict(state_dict=load_state_dict_from_url(vgg_urls["vgg16"]), strict=False)
    return model

def vgg16_bn() -> VGG:
    model = VGG(make_vgg_layers(vgg_cfgs["D"], batch_norm=True))
    # model.load_state_dict(state_dict=load_state_dict_from_url(vgg_urls["vgg16_bn"]), strict=False)
    return model

def vgg19() -> VGG:
    model = VGG(make_vgg_layers(vgg_cfgs["E"]))
    # model.load_state_dict(state_dict=load_state_dict_from_url(vgg_urls["vgg19"]), strict=False)
    return model

def vgg19_bn() -> VGG:
    model = VGG(make_vgg_layers(vgg_cfgs["E"], batch_norm=True))
    # model.load_state_dict(state_dict=load_state_dict_from_url(vgg_urls["vgg19_bn"]), strict=False)
    return model

def _vgg_encoder(model_name: str, block_size: Optional[int] = None, norm: str = "none", act: str = "none") -> VGGEncoder:
    return VGGEncoder(model_name, block_size, norm=norm, act=act)

def _vgg_encoder_decoder(model_name: str, block_size: Optional[int] = None, norm: str = "none", act: str = "none") -> VGGEncoderDecoder:
    return VGGEncoderDecoder(model_name, block_size, norm=norm, act=act)