Spaces:
Running
on
Zero
Running
on
Zero
File size: 11,690 Bytes
a7dedf9 a5dc50a a7dedf9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 |
import torch
from torch import nn, Tensor
import timm
from einops import rearrange
import torch.nn.functional as F
import math
from typing import Optional, Tuple
from ..utils import ConvUpsample, ConvDownsample, _get_activation, _get_norm_layer, ConvRefine
supported_vit_backbones = [
# Tiny
"vit_tiny_patch16_224", "vit_tiny_patch16_384",
# Small
"vit_small_patch8_224",
"vit_small_patch16_224", "vit_small_patch16_384",
"vit_small_patch32_224", "vit_small_patch32_384",
# Base
"vit_base_patch8_224",
"vit_base_patch16_224", "vit_base_patch16_384",
"vit_base_patch32_224", "vit_base_patch32_384",
# Large
"vit_large_patch16_224", "vit_large_patch16_384",
"vit_large_patch32_224", "vit_large_patch32_384",
# Huge
"vit_huge_patch14_224",
]
refiner_channels = {
"vit_tiny_patch16_224": 192,
"vit_tiny_patch16_384": 192,
"vit_small_patch8_224": 384,
"vit_small_patch16_224": 384,
"vit_small_patch16_384": 384,
"vit_small_patch32_224": 384,
"vit_small_patch32_384": 384,
"vit_base_patch8_224": 768,
"vit_base_patch16_224": 768,
"vit_base_patch16_384": 768,
"vit_base_patch32_224": 768,
"vit_base_patch32_384": 768,
"vit_large_patch16_224": 1024,
"vit_large_patch16_384": 1024,
"vit_large_patch32_224": 1024,
"vit_large_patch32_384": 1024,
}
refiner_groups = {
"vit_tiny_patch16_224": 1,
"vit_tiny_patch16_384": 1,
"vit_small_patch8_224": 1,
"vit_small_patch16_224": 1,
"vit_small_patch16_384": 1,
"vit_small_patch32_224": 1,
"vit_small_patch32_384": 1,
"vit_base_patch8_224": 1,
"vit_base_patch16_224": 1,
"vit_base_patch16_384": 1,
"vit_base_patch32_224": 1,
"vit_base_patch32_384": 1,
"vit_large_patch16_224": 1,
"vit_large_patch16_384": 1,
"vit_large_patch32_224": 1,
"vit_large_patch32_384": 1,
}
class ViT(nn.Module):
def __init__(
self,
model_name: str,
block_size: Optional[int] = None,
num_vpt: int = 32,
vpt_drop: float = 0.0,
input_size: Optional[Tuple[int, int]] = None,
norm: str = "none",
act: str = "none"
) -> None:
super().__init__()
assert model_name in supported_vit_backbones, f"Model {model_name} not supported"
assert num_vpt >= 0, f"Number of VPT tokens should be greater than 0, but got {num_vpt}."
self.model_name = model_name
self.num_vpt = num_vpt
self.vpt_drop = vpt_drop
# model = timm.create_model(model_name, pretrained=True)
model = timm.create_model(model_name, pretrained=False)
self.input_size = input_size if input_size is not None else model.patch_embed.img_size
self.pretrain_size = model.patch_embed.img_size
self.patch_size = model.patch_embed.patch_size
if self.patch_size[0] in [8, 16, 32]:
assert block_size is None or block_size in [8, 16, 32], f"Block size should be one of [8, 16, 32], but got {block_size}."
else: # patch_size == 14
assert block_size is None or block_size in [7, 14, 28], f"Block size should be one of [7, 14, 28], but got {block_size}."
self.num_layers = len(model.blocks)
self.embed_dim = model.cls_token.shape[-1]
if self.num_vpt > 0: # Use visual prompt tuning so freeze the backbone
for param in model.parameters():
param.requires_grad = False
# Setup VPT tokens
val = math.sqrt(6. / float(3 * self.patch_size[0] + self.embed_dim))
for idx in range(self.num_layers):
setattr(self, f"vpt_{idx}", nn.Parameter(torch.empty(self.num_vpt, self.embed_dim)))
nn.init.uniform_(getattr(self, f"vpt_{idx}"), -val, val)
setattr(self, f"vpt_drop_{idx}", nn.Dropout(self.vpt_drop))
self.patch_embed = model.patch_embed
self.cls_token = model.cls_token
self.pos_embed = model.pos_embed
self.pos_drop = model.pos_drop
self.patch_drop = model.patch_drop
self.norm_pre = model.norm_pre
self.blocks = model.blocks
self.norm = model.norm
self.encoder_channels = self.embed_dim
self.encoder_reduction = self.patch_size[0]
self.block_size = block_size if block_size is not None else self.encoder_reduction
if norm == "bn":
norm_layer = nn.BatchNorm2d
elif norm == "ln":
norm_layer = nn.LayerNorm
else:
norm_layer = _get_norm_layer(model)
if act == "relu":
activation = nn.ReLU(inplace=True)
elif act == "gelu":
activation = nn.GELU()
else:
activation = _get_activation(model)
if self.block_size < self.encoder_reduction:
assert self.block_size == self.encoder_reduction // 2, f"Block size should be half of the encoder reduction, but got {self.block_size} and {self.encoder_reduction}."
self.refiner = ConvUpsample(
in_channels=self.encoder_channels,
out_channels=self.encoder_channels,
norm_layer=norm_layer,
activation=activation,
)
elif self.block_size > self.encoder_reduction:
assert self.block_size == self.encoder_reduction * 2, f"Block size should be double of the encoder reduction, but got {self.block_size} and {self.encoder_reduction}."
self.refiner = ConvDownsample(
in_channels=self.encoder_channels,
out_channels=self.encoder_channels,
norm_layer=norm_layer,
activation=activation,
)
else:
self.refiner = ConvRefine(
in_channels=self.encoder_channels,
out_channels=self.encoder_channels,
norm_layer=norm_layer,
activation=activation,
)
self.refiner_channels = self.encoder_channels
self.refiner_reduction = self.block_size
self.decoder = nn.Identity()
self.decoder_channels = self.refiner_channels
self.reduction = self.refiner_reduction
# Adjust the positional embedding to match the new input size
self._adjust_pos_embed()
def _adjust_pos_embed(self) -> Tensor:
"""
Adjust the positional embedding to match the spatial resolution of the feature map.
Args:
orig_h, orig_w: The original spatial resolution of the image.
new_h, new_w: The new spatial resolution of the image.
"""
self.pos_embed = nn.Parameter(self._interpolate_pos_embed(self.pretrain_size[0], self.pretrain_size[1], self.input_size[0], self.input_size[1]), requires_grad=self.num_vpt == 0)
def _interpolate_pos_embed(self, orig_h: int, orig_w: int, new_h: int, new_w: int) -> Tensor:
"""
Interpolate the positional embedding to match the spatial resolution of the feature map.
Args:
orig_h, orig_w: The original spatial resolution of the image.
new_h, new_w: The new spatial resolution of the image.
"""
if (orig_h, orig_w) == (new_h, new_w):
return self.pos_embed # (1, (h * w + 1), d)
orig_h_patches, orig_w_patches = orig_h // self.patch_size[0], orig_w // self.patch_size[1]
new_h_patches, new_w_patches = new_h // self.patch_size[0], new_w // self.patch_size[1]
class_pos_embed, patch_pos_embed = self.pos_embed[:, :1, :], self.pos_embed[:, 1:, :]
patch_pos_embed = rearrange(patch_pos_embed, "1 (h w) d -> 1 d h w", h=orig_h_patches, w=orig_w_patches)
patch_pos_embed = F.interpolate(patch_pos_embed, size=(new_h_patches, new_w_patches), mode="bicubic", antialias=True)
patch_pos_embed = rearrange(patch_pos_embed, "1 d h w -> 1 (h w) d")
pos_embed = torch.cat((class_pos_embed, patch_pos_embed), dim=1)
return pos_embed
def train(self, mode: bool = True):
if self.num_vpt > 0 and mode:
self.patch_embed.eval()
self.pos_drop.eval()
self.patch_drop.eval()
self.norm_pre.eval()
self.blocks.eval()
self.norm.eval()
for idx in range(self.num_layers):
getattr(self, f"vpt_drop_{idx}").train()
self.refiner.train()
self.decoder.train()
else:
for module in self.children():
module.train(mode)
def _prepare_vpt(self, layer: int, batch_size: int, device: torch.device) -> Tensor:
vpt = getattr(self, f"vpt_{layer}").unsqueeze(0).expand(batch_size, -1, -1).to(device) # (batch_size, num_vpt, embed_dim)
vpt = getattr(self, f"vpt_drop_{layer}")(vpt)
return vpt
def _forward_patch_embed(self, x: Tensor) -> Tensor:
# This step performs 1) embed x into patches; 2) append the class token; 3) add positional embeddings.
assert len(x.shape) == 4, f"Expected input to have shape (batch_size, 3, height, width), but got {x.shape}"
batch_size, _, height, width = x.shape
# Step 1: Embed x into patches
x = self.patch_embed(x) # (b, h * w, d)
# Step 2: Append the class token
cls_token = self.cls_token.expand(batch_size, 1, -1)
x = torch.cat([cls_token, x], dim=1)
# Step 3: Add positional embeddings
pos_embed = self._interpolate_pos_embed(orig_h=self.input_size[0], orig_w=self.input_size[1], new_h=height, new_w=width).expand(batch_size, -1, -1)
x = self.pos_drop(x + pos_embed)
return x
def _forward_vpt(self, x: Tensor, idx: int) -> Tensor:
batch_size = x.shape[0]
device = x.device
# Assemble
vpt = self._prepare_vpt(idx, batch_size, device)
x = torch.cat([
x[:, :1, :], # class token
vpt,
x[:, 1:, :] # patches
], dim=1)
# Forward
x = self.blocks[idx](x)
# Disassemble
x = torch.cat([
x[:, :1, :], # class token
x[:, 1 + self.num_vpt:, :] # patches
], dim=1)
return x
def _forward(self, x: Tensor, idx: int) -> Tensor:
x = self.blocks[idx](x)
return x
def encode(self, x: Tensor) -> Tensor:
orig_h, orig_w = x.shape[-2:]
num_patches_h, num_patches_w = orig_h // self.patch_size[0], orig_w // self.patch_size[1]
x = self._forward_patch_embed(x)
x = self.patch_drop(x)
x = self.norm_pre(x)
for idx in range(self.num_layers):
x = self._forward_vpt(x, idx) if self.num_vpt > 0 else self._forward(x, idx)
x = self.norm(x)
x = x[:, 1:, :]
x = rearrange(x, "b (h w) d -> b d h w", h=num_patches_h, w=num_patches_w)
return x
def refine(self, x: Tensor) -> Tensor:
return self.refiner(x)
def decode(self, x: Tensor) -> Tensor:
return self.decoder(x)
def forward(self, x: Tensor) -> Tensor:
x = self.encode(x)
x = self.refine(x)
x = self.decode(x)
return x
def _vit(
model_name: str,
block_size: Optional[int] = None,
num_vpt: int = 32,
vpt_drop: float = 0.0,
input_size: Optional[Tuple[int, int]] = None,
norm: str = "none",
act: str = "none"
) -> ViT:
model = ViT(
model_name=model_name,
block_size=block_size,
num_vpt=num_vpt,
vpt_drop=vpt_drop,
input_size=input_size,
norm=norm,
act=act
)
return model
|