Spaces:
Running
on
Zero
Running
on
Zero
from torch import nn, Tensor | |
from torch.hub import load_state_dict_from_url | |
from typing import Optional | |
from .vgg import VGG | |
from .utils import make_vgg_layers, vgg_urls | |
from ..utils import _init_weights, ConvDownsample, _get_activation, _get_norm_layer | |
EPS = 1e-6 | |
encoder_cfg = [64, 64, "M", 128, 128, "M", 256, 256, 256, "M", 512, 512, 512] | |
decoder_cfg = [512, 512, 512, 256, 128] | |
class CSRNet(nn.Module): | |
def __init__( | |
self, | |
model_name: str, | |
block_size: Optional[int] = None, | |
norm: str = "none", | |
act: str = "none" | |
) -> None: | |
super().__init__() | |
assert model_name in ["vgg16", "vgg16_bn"], f"Model name should be one of ['vgg16', 'vgg16_bn'], but got {model_name}." | |
assert block_size is None or block_size in [8, 16, 32], f"block_size should be one of [8, 16, 32], but got {block_size}." | |
self.model_name = model_name | |
vgg = VGG(make_vgg_layers(encoder_cfg, in_channels=3, batch_norm="bn" in model_name, dilation=1)) | |
vgg.load_state_dict(load_state_dict_from_url(vgg_urls[model_name]), strict=False) | |
self.encoder = vgg.features | |
self.encoder_reduction = 8 | |
self.encoder_channels = 512 | |
self.block_size = block_size if block_size is not None else 8 | |
if norm == "bn": | |
norm_layer = nn.BatchNorm2d | |
elif norm == "ln": | |
norm_layer = nn.LayerNorm | |
else: | |
norm_layer = _get_norm_layer(vgg) | |
if act == "relu": | |
activation = nn.ReLU(inplace=True) | |
elif act == "gelu": | |
activation = nn.GELU() | |
else: | |
activation = _get_activation(vgg) | |
if self.block_size == self.encoder_reduction: | |
self.refiner = nn.Identity() | |
elif self.block_size > self.encoder_reduction: | |
if self.block_size == 32: | |
self.refiner = nn.Sequential( | |
ConvDownsample( | |
in_channels=self.encoder_channels, | |
out_channels=self.encoder_channels, | |
norm_layer=norm_layer, | |
activation=activation, | |
), | |
ConvDownsample( | |
in_channels=self.encoder_channels, | |
out_channels=self.encoder_channels, | |
norm_layer=norm_layer, | |
activation=activation, | |
) | |
) | |
elif self.block_size == 16: | |
self.refiner = ConvDownsample( | |
in_channels=self.encoder_channels, | |
out_channels=self.encoder_channels, | |
norm_layer=norm_layer, | |
activation=activation, | |
) | |
self.refiner_channels = self.encoder_channels | |
self.refiner_reduction = self.block_size | |
decoder = make_vgg_layers(decoder_cfg, in_channels=512, batch_norm="bn" in model_name, dilation=2) | |
decoder.apply(_init_weights) | |
self.decoder = decoder | |
self.decoder_channels = decoder_cfg[-1] | |
self.decoder_reduction = self.refiner_reduction | |
def encode(self, x: Tensor) -> Tensor: | |
return self.encoder(x) | |
def refine(self, x: Tensor) -> Tensor: | |
return self.refiner(x) | |
def decode(self, x: Tensor) -> Tensor: | |
return self.decoder(x) | |
def forward(self, x: Tensor) -> Tensor: | |
x = self.encode(x) | |
x = self.refine(x) | |
x = self.decode(x) | |
return x | |
def _csrnet(block_size: Optional[int] = None, norm: str = "none", act: str = "none") -> CSRNet: | |
return CSRNet("vgg16", block_size=block_size, norm=norm, act=act) | |
def _csrnet_bn(block_size: Optional[int] = None, norm: str = "none", act: str = "none") -> CSRNet: | |
return CSRNet("vgg16_bn", block_size=block_size, norm=norm, act=act) | |