Spaces:
Running
on
Zero
Running
on
Zero
from torch import nn, Tensor | |
import open_clip | |
from peft import get_peft_model, LoraConfig | |
from ..utils import ConvRefine, ConvAdapter | |
from ..utils import ConvUpsample, _get_norm_layer, _get_activation | |
convnext_names_and_weights = { | |
"convnext_base": ["laion400m_s13b_b51k"], # 107.49M | |
"convnext_base_w": ["laion2b_s13b_b82k", "laion2b_s13b_b82k_augreg", "laion_aesthetic_s13b_b82k"], # 107.75M | |
"convnext_base_w_320": ["laion_aesthetic_s13b_b82k", "laion_aesthetic_s13b_b82k_augreg"], # 107.75M | |
"convnext_large_d": ["laion2b_s26b_b102k_augreg"], # 217.46M | |
"convnext_large_d_320": ["laion2b_s29b_b131k_ft", "laion2b_s29b_b131k_ft_soup"], # 217.46M | |
"convnext_xxlarge": ["laion2b_s34b_b82k_augreg", "laion2b_s34b_b82k_augreg_rewind", "laion2b_s34b_b82k_augreg_soup"] # 896.88M | |
} | |
refiner_channels = { | |
"convnext_base": 1024, | |
"convnext_base_w": 1024, | |
"convnext_base_w_320": 1024, | |
"convnext_large_d": 1536, | |
"convnext_large_d_320": 1536, | |
"convnext_xxlarge": 3072, | |
} | |
refiner_groups = { | |
"convnext_base": 1, | |
"convnext_base_w": 1, | |
"convnext_base_w_320": 1, | |
"convnext_large_d": refiner_channels["convnext_large_d"] // 512, # 3 | |
"convnext_large_d_320": refiner_channels["convnext_large_d_320"] // 512, # 3 | |
"convnext_xxlarge": refiner_channels["convnext_xxlarge"] // 512, # 6 | |
} | |
class ConvNeXt(nn.Module): | |
def __init__( | |
self, | |
model_name: str, | |
weight_name: str, | |
block_size: int = 16, | |
adapter: bool = False, | |
adapter_reduction: int = 4, | |
norm: str = "none", | |
act: str = "none" | |
) -> None: | |
super(ConvNeXt, self).__init__() | |
assert model_name in convnext_names_and_weights, f"Model name should be one of {list(convnext_names_and_weights.keys())}, but got {model_name}." | |
assert weight_name in convnext_names_and_weights[model_name], f"Pretrained should be one of {convnext_names_and_weights[model_name]}, but got {weight_name}." | |
assert block_size in [32, 16, 8], f"block_size should be one of [32, 16, 8], got {block_size}" | |
self.model_name, self.weight_name = model_name, weight_name | |
self.block_size = block_size | |
# model = open_clip.create_model_from_pretrained(model_name, weight_name, return_transform=False).visual | |
model = open_clip.create_model(model_name=model_name, pretrained=False, load_weights=False).visual | |
self.adapter = adapter | |
if adapter: | |
self.adapter_reduction = adapter_reduction | |
for param in model.parameters(): | |
param.requires_grad = False | |
self.stem = model.trunk.stem | |
self.depth = len(model.trunk.stages) | |
for idx, stage in enumerate(model.trunk.stages): | |
setattr(self, f"stage{idx}", stage) | |
if adapter: | |
setattr(self, f"adapter{idx}", ConvAdapter( | |
in_channels=stage.blocks[-1].mlp.fc2.out_features, | |
bottleneck_channels=stage.blocks[-1].mlp.fc2.out_features // adapter_reduction, | |
) if idx < self.depth - 1 else nn.Identity()) # No adapter for the last stage | |
if self.model_name in ["convnext_base", "convnext_base_w", "convnext_base_w_320", "convnext_xxlarge"]: | |
self.in_features, self.out_features = model.head.proj.in_features, model.head.proj.out_features | |
else: # "convnext_large_d", "convnext_large_d_320": | |
self.in_features, self.out_features = model.head.mlp.fc1.in_features, model.head.mlp.fc2.out_features | |
if norm == "bn": | |
norm_layer = nn.BatchNorm2d | |
elif norm == "ln": | |
norm_layer = nn.LayerNorm | |
else: | |
norm_layer = _get_norm_layer(model) | |
if act == "relu": | |
activation = nn.ReLU(inplace=True) | |
elif act == "gelu": | |
activation = nn.GELU() | |
else: | |
activation = _get_activation(model) | |
if block_size == 32: | |
self.refiner = ConvRefine( | |
in_channels=self.in_features, | |
out_channels=self.in_features, | |
norm_layer=norm_layer, | |
activation=activation, | |
groups=refiner_groups[self.model_name], | |
) | |
elif block_size == 16: | |
self.refiner = ConvUpsample( | |
in_channels=self.in_features, | |
out_channels=self.in_features, | |
norm_layer=norm_layer, | |
activation=activation, | |
groups=refiner_groups[self.model_name], | |
) | |
else: # block_size == 8 | |
self.refiner = nn.Sequential( | |
ConvUpsample( | |
in_channels=self.in_features, | |
out_channels=self.in_features, | |
norm_layer=norm_layer, | |
activation=activation, | |
groups=refiner_groups[self.model_name], | |
), | |
ConvUpsample( | |
in_channels=self.in_features, | |
out_channels=self.in_features, | |
norm_layer=norm_layer, | |
activation=activation, | |
groups=refiner_groups[self.model_name], | |
), | |
) | |
def train(self, mode: bool = True): | |
if self.adapter and mode: | |
# training: | |
self.stem.eval() | |
for idx in range(self.depth): | |
getattr(self, f"stage{idx}").eval() | |
getattr(self, f"adapter{idx}").train() | |
self.refiner.train() | |
else: | |
# evaluation: | |
for module in self.children(): | |
module.train(mode) | |
def forward(self, x: Tensor) -> Tensor: | |
x = self.stem(x) | |
for idx in range(self.depth): | |
x = getattr(self, f"stage{idx}")(x) | |
if self.adapter: | |
x = getattr(self, f"adapter{idx}")(x) | |
x = self.refiner(x) | |
return x | |
def _convnext( | |
model_name: str, | |
weight_name: str, | |
block_size: int = 16, | |
adapter: bool = False, | |
adapter_reduction: int = 4, | |
lora: bool = False, | |
lora_rank: int = 16, | |
lora_alpha: float = 32.0, | |
lora_dropout: float = 0.1, | |
norm: str = "none", | |
act: str = "none" | |
) -> ConvNeXt: | |
assert not (lora and adapter), "Lora and adapter cannot be used together." | |
model = ConvNeXt( | |
model_name=model_name, | |
weight_name=weight_name, | |
block_size=block_size, | |
adapter=adapter, | |
adapter_reduction=adapter_reduction, | |
norm=norm, | |
act=act | |
) | |
if lora: | |
target_modules = [] | |
for name, module in model.named_modules(): | |
if isinstance(module, (nn.Linear, nn.Conv2d)) and "refiner" not in name: | |
target_modules.append(name) | |
lora_config = LoraConfig( | |
r=lora_rank, | |
lora_alpha=lora_alpha, | |
lora_dropout=lora_dropout, | |
bias="none", | |
target_modules=target_modules, | |
) | |
model = get_peft_model(model, lora_config) | |
# Unfreeze refiner | |
for name, module in model.named_modules(): | |
if "refiner" in name: | |
module.requires_grad_(True) | |
return model |