Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
from torch import nn | |
import torch.nn.functional as F | |
import torchvision.transforms.functional as TF | |
from torch.amp import autocast | |
from torch import Tensor | |
import spaces | |
import numpy as np | |
from PIL import Image | |
import gradio as gr | |
from matplotlib import cm | |
from huggingface_hub import hf_hub_download | |
from warnings import warn | |
from models import get_model | |
mean = (0.485, 0.456, 0.406) | |
std = (0.229, 0.224, 0.225) | |
alpha = 0.8 | |
EPS = 1e-8 | |
loaded_model = None | |
current_model_config = {"variant": None, "dataset": None, "metric": None} | |
pretrained_models = [ | |
"ZIP-B @ ShanghaiTech A @ MAE", "ZIP-B @ ShanghaiTech A @ NAE", | |
"ZIP-B @ ShanghaiTech B @ MAE", "ZIP-B @ ShanghaiTech B @ NAE", | |
"ZIP-B @ UCF-QNRF @ MAE", "ZIP-B @ UCF-QNRF @ NAE", | |
"ZIP-B @ NWPU-Crowd @ MAE", "ZIP-B @ NWPU-Crowd @ NAE", | |
"โโโโโโโโโโโโโโโโโโโโโโโโโโโโ", | |
"ZIP-S @ ShanghaiTech A @ MAE", "ZIP-S @ ShanghaiTech A @ NAE", | |
"ZIP-S @ ShanghaiTech B @ MAE", "ZIP-S @ ShanghaiTech B @ NAE", | |
"ZIP-S @ UCF-QNRF @ MAE", "ZIP-S @ UCF-QNRF @ NAE", | |
"โโโโโโโโโโโโโโโโโโโโโโโโโโโโ", | |
"ZIP-T @ ShanghaiTech A @ MAE", "ZIP-T @ ShanghaiTech A @ NAE", | |
"ZIP-T @ ShanghaiTech B @ MAE", "ZIP-T @ ShanghaiTech B @ NAE", | |
"ZIP-T @ UCF-QNRF @ MAE", "ZIP-T @ UCF-QNRF @ NAE", | |
"โโโโโโโโโโโโโโโโโโโโโโโโโโโโ", | |
"ZIP-N @ ShanghaiTech A @ MAE", "ZIP-N @ ShanghaiTech A @ NAE", | |
"ZIP-N @ ShanghaiTech B @ MAE", "ZIP-N @ ShanghaiTech B @ NAE", | |
"ZIP-N @ UCF-QNRF @ MAE", "ZIP-N @ UCF-QNRF @ NAE", | |
"โโโโโโโโโโโโโโโโโโโโโโโโโโโโ", | |
"ZIP-P @ ShanghaiTech A @ MAE", "ZIP-P @ ShanghaiTech A @ NAE", | |
"ZIP-P @ ShanghaiTech B @ MAE", "ZIP-P @ ShanghaiTech B @ NAE", | |
"ZIP-P @ UCF-QNRF @ MAE", "ZIP-P @ UCF-QNRF @ NAE", | |
] | |
# ----------------------------- | |
# Model management functions | |
# ----------------------------- | |
def update_model_if_needed(variant_dataset_metric: str): | |
""" | |
Load a new model only if the configuration has changed. | |
""" | |
global loaded_model, current_model_config | |
# ๅฆๆๆฏๅๅฒ็บฟ๏ผๅ่ทณ่ฟ | |
if "โโโโโโ" in variant_dataset_metric: | |
return "Please select a valid model configuration" | |
parts = variant_dataset_metric.split(" @ ") | |
if len(parts) != 3: | |
return "Invalid model configuration format" | |
variant, dataset, metric = parts[0], parts[1], parts[2].lower() | |
if dataset == "ShanghaiTech A": | |
dataset_name = "sha" | |
elif dataset == "ShanghaiTech B": | |
dataset_name = "shb" | |
elif dataset == "UCF-QNRF": | |
dataset_name = "qnrf" | |
elif dataset == "NWPU-Crowd": | |
dataset_name = "nwpu" | |
else: | |
return f"Unknown dataset: {dataset}" | |
# ๅชๆดๆฐ้ ็ฝฎ๏ผไธๅจไธป่ฟ็จไธญๅ ่ฝฝๆจกๅ | |
if (current_model_config["variant"] != variant or | |
current_model_config["dataset"] != dataset_name or | |
current_model_config["metric"] != metric): | |
print(f"Model configuration updated: {variant} @ {dataset} with {metric} metric") | |
current_model_config = {"variant": variant, "dataset": dataset_name, "metric": metric} | |
loaded_model = None # ้็ฝฎๆจกๅ๏ผๅฐๅจGPU่ฟ็จไธญ้ๆฐๅ ่ฝฝ | |
return f"Model configuration set: {variant} @ {dataset} ({metric})" | |
else: | |
print(f"Model configuration unchanged: {variant} @ {dataset} with {metric} metric") | |
return f"Model configuration: {variant} @ {dataset} ({metric})" | |
# ----------------------------- | |
# Define the model architecture | |
# ----------------------------- | |
def load_model(variant: str, dataset: str = "ShanghaiTech B", metric: str = "mae"): | |
""" Load the model weights from the Hugging Face Hub.""" | |
# global loaded_model | |
# Build model | |
model_info_path = hf_hub_download( | |
repo_id=f"Yiming-M/{variant}", | |
filename=f"checkpoints/{dataset}/best_{metric}.pth", | |
) | |
model = get_model(model_info_path=model_info_path) | |
model.eval() | |
# loaded_model = model | |
return model | |
def _calc_size( | |
img_w: int, | |
img_h: int, | |
min_size: int, | |
max_size: int, | |
base: int = 32 | |
): | |
""" | |
This function generates a new size for an image while keeping the aspect ratio. The new size should be within the given range (min_size, max_size). | |
Args: | |
img_w (int): The width of the image. | |
img_h (int): The height of the image. | |
min_size (int): The minimum size of the edges of the image. | |
max_size (int): The maximum size of the edges of the image. | |
# base (int): The base number to which the new size should be a multiple of. | |
""" | |
assert min_size % base == 0, f"min_size ({min_size}) must be a multiple of {base}" | |
if max_size != float("inf"): | |
assert max_size % base == 0, f"max_size ({max_size}) must be a multiple of {base} if provided" | |
assert min_size <= max_size, f"min_size ({min_size}) must be less than or equal to max_size ({max_size})" | |
aspect_ratios = (img_w / img_h, img_h / img_w) | |
if min_size / max_size <= min(aspect_ratios) <= max(aspect_ratios) <= max_size / min_size: # possible to resize and preserve the aspect ratio | |
if min_size <= min(img_w, img_h) <= max(img_w, img_h) <= max_size: # already within the range, no need to resize | |
ratio = 1. | |
elif min(img_w, img_h) < min_size: # smaller than the minimum size, resize to the minimum size | |
ratio = min_size / min(img_w, img_h) | |
else: # larger than the maximum size, resize to the maximum size | |
ratio = max_size / max(img_w, img_h) | |
new_w, new_h = int(round(img_w * ratio / base) * base), int(round(img_h * ratio / base) * base) | |
new_w = max(min_size, min(max_size, new_w)) | |
new_h = max(min_size, min(max_size, new_h)) | |
return new_w, new_h | |
else: # impossible to resize and preserve the aspect ratio | |
msg = f"Impossible to resize {img_w}x{img_h} image while preserving the aspect ratio to a size within the range ({min_size}, {max_size}). Will not limit the maximum size." | |
warn(msg) | |
return _calc_size(img_w, img_h, min_size, float("inf"), base) | |
# ----------------------------- | |
# Preprocessing function | |
# ----------------------------- | |
# Adjust the image transforms to match what your model expects. | |
def transform(image: Image.Image, dataset_name: str) -> Tensor: | |
assert isinstance(image, Image.Image), "Input must be a PIL Image" | |
image_tensor = TF.to_tensor(image) | |
if dataset_name == "sha": | |
min_size = 448 | |
max_size = float("inf") | |
elif dataset_name == "shb": | |
min_size = 448 | |
max_size = float("inf") | |
elif dataset_name == "qnrf": | |
min_size = 448 | |
max_size = 2048 | |
elif dataset_name == "nwpu": | |
min_size = 448 | |
max_size = 3072 | |
image_height, image_width = image_tensor.shape[-2:] | |
new_width, new_height = _calc_size( | |
img_w=image_width, | |
img_h=image_height, | |
min_size=min_size, | |
max_size=max_size, | |
base=32 | |
) | |
if new_height != image_height or new_width != image_width: | |
image_tensor = TF.resize(image_tensor, size=(new_height, new_width), interpolation=TF.InterpolationMode.BICUBIC, antialias=True) | |
image_tensor = TF.normalize(image_tensor, mean=mean, std=std) | |
return image_tensor.unsqueeze(0) # Add batch dimension | |
def _sliding_window_predict( | |
model: nn.Module, | |
image: Tensor, | |
window_size: int, | |
stride: int, | |
max_num_windows: int = 256 | |
): | |
assert len(image.shape) == 4, f"Image must be a 4D tensor (1, c, h, w), got {image.shape}" | |
window_size = (int(window_size), int(window_size)) if isinstance(window_size, (int, float)) else window_size | |
stride = (int(stride), int(stride)) if isinstance(stride, (int, float)) else stride | |
window_size = tuple(window_size) | |
stride = tuple(stride) | |
assert isinstance(window_size, tuple) and len(window_size) == 2 and window_size[0] > 0 and window_size[1] > 0, f"Window size must be a positive integer tuple (h, w), got {window_size}" | |
assert isinstance(stride, tuple) and len(stride) == 2 and stride[0] > 0 and stride[1] > 0, f"Stride must be a positive integer tuple (h, w), got {stride}" | |
assert stride[0] <= window_size[0] and stride[1] <= window_size[1], f"Stride must be smaller than window size, got {stride} and {window_size}" | |
image_height, image_width = image.shape[-2:] | |
window_height, window_width = window_size | |
assert image_height >= window_height and image_width >= window_width, f"Image size must be larger than window size, got image size {image.shape} and window size {window_size}" | |
stride_height, stride_width = stride | |
num_rows = int(np.ceil((image_height - window_height) / stride_height) + 1) | |
num_cols = int(np.ceil((image_width - window_width) / stride_width) + 1) | |
if hasattr(model, "block_size"): | |
block_size = model.block_size | |
elif hasattr(model, "module") and hasattr(model.module, "block_size"): | |
block_size = model.module.block_size | |
else: | |
raise ValueError("Model must have block_size attribute") | |
assert window_height % block_size == 0 and window_width % block_size == 0, f"Window size must be divisible by block size, got {window_size} and {block_size}" | |
windows = [] | |
for i in range(num_rows): | |
for j in range(num_cols): | |
x_start, y_start = i * stride_height, j * stride_width | |
x_end, y_end = x_start + window_height, y_start + window_width | |
if x_end > image_height: | |
x_start, x_end = image_height - window_height, image_height | |
if y_end > image_width: | |
y_start, y_end = image_width - window_width, image_width | |
window = image[:, :, x_start:x_end, y_start:y_end] | |
windows.append(window) | |
windows = torch.cat(windows, dim=0).to(image.device) # batched windows, shape: (num_windows, c, h, w) | |
model.eval() | |
pi_maps, lambda_maps = [], [] | |
for i in range(0, len(windows), max_num_windows): | |
with torch.no_grad(), autocast(device_type="cuda" if torch.cuda.is_available() else "cpu"): | |
image_feats = model.backbone(windows[i: min(i + max_num_windows, len(windows))]) | |
pi_image_feats, lambda_image_feats = model.pi_head(image_feats), model.lambda_head(image_feats) | |
pi_image_feats = F.normalize(pi_image_feats.permute(0, 2, 3, 1), p=2, dim=-1) # shape (B, H, W, C) | |
lambda_image_feats = F.normalize(lambda_image_feats.permute(0, 2, 3, 1), p=2, dim=-1) # shape (B, H, W, C) | |
pi_text_feats, lambda_text_feats = model.pi_text_feats, model.lambda_text_feats | |
pi_logit_scale, lambda_logit_scale = model.pi_logit_scale.exp(), model.lambda_logit_scale.exp() | |
pi_logit_map = pi_logit_scale * pi_image_feats @ pi_text_feats.t() # (B, H, W, 2), logits per image | |
lambda_logit_map = lambda_logit_scale * lambda_image_feats @ lambda_text_feats.t() # (B, H, W, N - 1), logits per image | |
pi_logit_map = pi_logit_map.permute(0, 3, 1, 2) # (B, 2, H, W) | |
lambda_logit_map = lambda_logit_map.permute(0, 3, 1, 2) # (B, N - 1, H, W) | |
lambda_map = (lambda_logit_map.softmax(dim=1) * model.bin_centers[:, 1:]).sum(dim=1, keepdim=True) # (B, 1, H, W) | |
pi_map = pi_logit_map.softmax(dim=1)[:, 0:1] # (B, 1, H, W) | |
pi_maps.append(pi_map.cpu().numpy()) | |
lambda_maps.append(lambda_map.cpu().numpy()) | |
# assemble the density map | |
pi_maps = np.concatenate(pi_maps, axis=0) # shape: (num_windows, 1, H, W) | |
lambda_maps = np.concatenate(lambda_maps, axis=0) # shape: (num_windows, 1, H, W) | |
assert pi_maps.shape == lambda_maps.shape, f"pi_maps and lambda_maps must have the same shape, got {pi_maps.shape} and {lambda_maps.shape}" | |
pi_map = np.zeros((pi_maps.shape[1], image_height // block_size, image_width // block_size), dtype=np.float32) | |
lambda_map = np.zeros((lambda_maps.shape[1], image_height // block_size, image_width // block_size), dtype=np.float32) | |
count_map = np.zeros((pi_maps.shape[1], image_height // block_size, image_width // block_size), dtype=np.float32) | |
idx = 0 | |
for i in range(num_rows): | |
for j in range(num_cols): | |
x_start, y_start = i * stride_height, j * stride_width | |
x_end, y_end = x_start + window_height, y_start + window_width | |
if x_end > image_height: | |
x_start, x_end = image_height - window_height, image_height | |
if y_end > image_width: | |
y_start, y_end = image_width - window_width, image_width | |
pi_map[:, (x_start // block_size): (x_end // block_size), (y_start // block_size): (y_end // block_size)] += pi_maps[idx, :, :, :] | |
lambda_map[:, (x_start // block_size): (x_end // block_size), (y_start // block_size): (y_end // block_size)] += lambda_maps[idx, :, :, :] | |
count_map[:, (x_start // block_size): (x_end // block_size), (y_start // block_size): (y_end // block_size)] += 1. | |
idx += 1 | |
# average the density map | |
pi_map /= count_map | |
lambda_map /= count_map | |
# convert to Tensor and reshape | |
pi_map = torch.from_numpy(pi_map).unsqueeze(0) # shape: (1, 1, H // block_size, W // block_size) | |
lambda_map = torch.from_numpy(lambda_map).unsqueeze(0) # shape: (1, 1, H // block_size, W // block_size) | |
return pi_map, lambda_map | |
# ----------------------------- | |
# Inference function | |
# ----------------------------- | |
def predict(image: Image.Image, variant_dataset_metric: str): | |
""" | |
Given an input image, preprocess it, run the model to obtain a density map, | |
compute the total crowd count, and prepare the density map for display. | |
""" | |
global loaded_model, current_model_config | |
# ๅจGPU่ฟ็จไธญๅฎไนdevice | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
# ๅฆๆ้ๆฉ็ๆฏๅๅฒ็บฟ๏ผ่ฟๅ้่ฏฏไฟกๆฏ | |
if "โโโโโโ" in variant_dataset_metric: | |
return image, None, None, "โ ๏ธ Please select a valid model configuration", None, None, None | |
parts = variant_dataset_metric.split(" @ ") | |
if len(parts) != 3: | |
return image, None, None, "โ Invalid model configuration format", None, None, None | |
variant, dataset, metric = parts[0], parts[1], parts[2].lower() | |
if dataset == "ShanghaiTech A": | |
dataset_name = "sha" | |
elif dataset == "ShanghaiTech B": | |
dataset_name = "shb" | |
elif dataset == "UCF-QNRF": | |
dataset_name = "qnrf" | |
elif dataset == "NWPU-Crowd": | |
dataset_name = "nwpu" | |
else: | |
return image, None, None, f"โ Unknown dataset: {dataset}", None, None, None | |
# ๅจGPU่ฟ็จไธญๅ ่ฝฝๆจกๅ๏ผๅฆๆ้่ฆ๏ผ | |
if (loaded_model is None or | |
current_model_config["variant"] != variant or | |
current_model_config["dataset"] != dataset_name or | |
current_model_config["metric"] != metric): | |
print(f"Loading model in GPU process: {variant} @ {dataset} with {metric} metric") | |
loaded_model = load_model(variant=variant, dataset=dataset_name, metric=metric) | |
current_model_config = {"variant": variant, "dataset": dataset_name, "metric": metric} | |
if not hasattr(loaded_model, "input_size"): | |
if dataset_name == "sha": | |
loaded_model.input_size = 224 | |
elif dataset_name == "shb": | |
loaded_model.input_size = 448 | |
elif dataset_name == "qnrf": | |
loaded_model.input_size = 672 | |
elif dataset_name == "nwpu": | |
loaded_model.input_size = 672 | |
elif isinstance(loaded_model.input_size, (list, tuple)): | |
loaded_model.input_size = loaded_model.input_size[0] # Use the first element if it's a list or tuple | |
else: | |
assert isinstance(loaded_model.input_size, (int, float)), f"input_size must be an int or float, got {type(loaded_model.input_size)}" | |
loaded_model.to(device) | |
# Preprocess the image | |
input_width, input_height = image.size | |
image_tensor = transform(image, dataset_name).to(device) # shape: (1, 3, H, W) | |
input_size = loaded_model.input_size | |
image_height, image_width = image_tensor.shape[-2:] | |
aspect_ratio = image_width / image_height | |
if image_height < input_size: | |
new_height = input_size | |
new_width = int(new_height * aspect_ratio) | |
image_tensor = F.interpolate(image_tensor, size=(new_height, new_width), mode="bicubic", align_corners=False, antialias=True) | |
image_height, image_width = new_height, new_width | |
if image_width < input_size: | |
new_width = input_size | |
new_height = int(new_width / aspect_ratio) | |
image_tensor = F.interpolate(image_tensor, size=(new_height, new_width), mode="bicubic", align_corners=False, antialias=True) | |
image_height, image_width = new_height, new_width | |
with torch.no_grad(): | |
if hasattr(loaded_model, "num_vpt") and loaded_model.num_vpt is not None and loaded_model.num_vpt > 0: # For ViT models, use sliding window prediction | |
# For ViT models with VPT | |
pi_map, lambda_map = _sliding_window_predict( | |
model=loaded_model, | |
image=image_tensor, | |
window_size=input_size, | |
stride=input_size | |
) | |
elif hasattr(loaded_model, "pi_text_feats") and hasattr(loaded_model, "lambda_text_feats") and loaded_model.pi_text_feats is not None and loaded_model.lambda_text_feats is not None: # For other CLIP-based models | |
image_feats = loaded_model.backbone(image_tensor) | |
# image_feats = F.normalize(image_feats.permute(0, 2, 3, 1), p=2, dim=-1) # shape (B, H, W, C) | |
pi_image_feats, lambda_image_feats = loaded_model.pi_head(image_feats), loaded_model.lambda_head(image_feats) | |
pi_image_feats = F.normalize(pi_image_feats.permute(0, 2, 3, 1), p=2, dim=-1) # shape (B, H, W, C) | |
lambda_image_feats = F.normalize(lambda_image_feats.permute(0, 2, 3, 1), p=2, dim=-1) # shape (B, H, W, C) | |
pi_text_feats, lambda_text_feats = loaded_model.pi_text_feats, loaded_model.lambda_text_feats | |
pi_logit_scale, lambda_logit_scale = loaded_model.pi_logit_scale.exp(), loaded_model.lambda_logit_scale.exp() | |
pi_logit_map = pi_logit_scale * pi_image_feats @ pi_text_feats.t() # (B, H, W, 2), logits per image | |
lambda_logit_map = lambda_logit_scale * lambda_image_feats @ lambda_text_feats.t() # (B, H, W, N - 1), logits per image | |
pi_logit_map = pi_logit_map.permute(0, 3, 1, 2) # (B, 2, H, W) | |
lambda_logit_map = lambda_logit_map.permute(0, 3, 1, 2) # (B, N - 1, H, W) | |
lambda_map = (lambda_logit_map.softmax(dim=1) * loaded_model.bin_centers[:, 1:]).sum(dim=1, keepdim=True) # (B, 1, H, W) | |
pi_map = pi_logit_map.softmax(dim=1)[:, 0:1] # (B, 1, H, W) | |
else: # For non-CLIP models | |
x = loaded_model.backbone(image_tensor) | |
logit_pi_map = loaded_model.pi_head(x) # shape: (B, 2, H, W) | |
logit_map = loaded_model.bin_head(x) # shape: (B, C, H, W) | |
lambda_map= (logit_map.softmax(dim=1) * loaded_model.bin_centers[:, 1:]).sum(dim=1, keepdim=True) # shape: (B, 1, H, W) | |
pi_map = logit_pi_map.softmax(dim=1)[:, 0:1] # shape: (B, 1, H, W) | |
den_map = (1.0 - pi_map) * lambda_map # shape: (B, 1, H, W) | |
count = den_map.sum().item() | |
strucrual_zero_map = F.interpolate( | |
pi_map, size=(input_height, input_width), mode="bilinear", align_corners=False, antialias=True | |
).cpu().squeeze().numpy() | |
lambda_map = F.interpolate( | |
lambda_map, size=(input_height, input_width), mode="bilinear", align_corners=False, antialias=True | |
).cpu().squeeze().numpy() | |
den_map = F.interpolate( | |
den_map, size=(input_height, input_width), mode="bilinear", align_corners=False, antialias=True | |
).cpu().squeeze().numpy() | |
sampling_zero_map = (1.0 - strucrual_zero_map) * np.exp(-lambda_map) | |
complete_zero_map = strucrual_zero_map + sampling_zero_map | |
# Normalize maps for display purposes | |
def normalize_map(x: np.ndarray) -> np.ndarray: | |
""" Normalize the map to [0, 1] range for visualization. """ | |
x_min = np.min(x) | |
x_max = np.max(x) | |
if x_max - x_min < EPS: | |
return np.zeros_like(x) | |
return (x - x_min) / (x_max - x_min + EPS) | |
# strucrual_zero_map = normalize_map(strucrual_zero_map) | |
# sampling_zero_map = normalize_map(sampling_zero_map) | |
lambda_map = normalize_map(lambda_map) | |
# den_map = normalize_map(den_map) | |
# complete_zero_map = normalize_map(complete_zero_map) | |
# Apply a colormap for better visualization | |
# Options: 'viridis', 'plasma', 'hot', 'inferno', 'jet' (recommended) | |
colormap = cm.get_cmap("jet") | |
# The colormap returns values in [0,1]. Scale to [0,255] and convert to uint8. | |
den_map = (colormap(den_map) * 255).astype(np.uint8) | |
strucrual_zero_map = (colormap(strucrual_zero_map) * 255).astype(np.uint8) | |
sampling_zero_map = (colormap(sampling_zero_map) * 255).astype(np.uint8) | |
lambda_map = (colormap(lambda_map) * 255).astype(np.uint8) | |
complete_zero_map = (colormap(complete_zero_map) * 255).astype(np.uint8) | |
# Convert to PIL images | |
den_map = Image.fromarray(den_map).convert("RGBA") | |
strucrual_zero_map = Image.fromarray(strucrual_zero_map).convert("RGBA") | |
sampling_zero_map = Image.fromarray(sampling_zero_map).convert("RGBA") | |
lambda_map = Image.fromarray(lambda_map).convert("RGBA") | |
complete_zero_map = Image.fromarray(complete_zero_map).convert("RGBA") | |
# Ensure the original image is in RGBA format. | |
image_rgba = image.convert("RGBA") | |
den_map = Image.blend(image_rgba, den_map, alpha=alpha) | |
strucrual_zero_map = Image.blend(image_rgba, strucrual_zero_map, alpha=alpha) | |
sampling_zero_map = Image.blend(image_rgba, sampling_zero_map, alpha=alpha) | |
lambda_map = Image.blend(image_rgba, lambda_map, alpha=alpha) | |
complete_zero_map = Image.blend(image_rgba, complete_zero_map, alpha=alpha) | |
# ๆ ผๅผๅ่ฎกๆฐๆพ็คบ | |
count_display = f"๐ฅ {round(count, 2)} people detected" | |
if count < 1: | |
count_display = "๐ค Less than 1 person detected" | |
elif count == 1: | |
count_display = "๐ค 1 person detected" | |
elif count < 10: | |
count_display = f"๐ฅ {round(count, 1)} people detected" | |
else: | |
count_display = f"๐ฅ {round(count)} people detected" | |
return image, den_map, lambda_map, count_display, strucrual_zero_map, sampling_zero_map, complete_zero_map | |
# ----------------------------- | |
# Build Gradio Interface using Blocks for a two-column layout | |
# ----------------------------- | |
css = """ | |
/* ๅฏผๅ ฅ็งๆๆๅญไฝ */ | |
@import url('https://fonts.googleapis.com/css2?family=Inter:wght@300;400;500;600;700;800&family=JetBrains+Mono:wght@400;500;600;700&family=Fira+Code:wght@300;400;500;600&display=swap'); | |
/* ๅบ็กๆ ทๅผ - ไฟๆๅ่ฝๆง */ | |
.gradio-container { | |
max-width: 1600px; | |
margin: 0 auto; | |
padding: 20px; | |
font-family: 'Inter', -apple-system, BlinkMacSystemFont, 'Segoe UI', system-ui, sans-serif; | |
} | |
/* ๆ ้ขไฝฟ็จ็งๆๆๅญไฝ */ | |
.gr-markdown h1 { | |
font-family: 'JetBrains Mono', 'Fira Code', monospace; | |
font-weight: 700; | |
text-align: center; | |
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%); | |
-webkit-background-clip: text; | |
-webkit-text-fill-color: transparent; | |
letter-spacing: -0.02em; | |
} | |
.gr-markdown h2, .gr-markdown h3 { | |
font-family: 'Inter', sans-serif; | |
font-weight: 600; | |
letter-spacing: -0.01em; | |
} | |
/* ไปฃ็ ๅๆๆฏๆๆฌไฝฟ็จ็ญๅฎฝๅญไฝ */ | |
.gr-textbox[label*="Status"], | |
.gr-textbox[label*="Count"], | |
code, pre { | |
font-family: 'JetBrains Mono', 'Fira Code', 'Roboto Mono', monospace; | |
} | |
/* ๆ้ฎไฝฟ็จ็ฐไปฃๅญไฝ */ | |
.gr-button { | |
font-family: 'Inter', sans-serif; | |
font-weight: 600; | |
letter-spacing: 0.01em; | |
} | |
/* ็ฎๅ็ๅๅฒ็บฟๆ ทๅผ */ | |
option[value*="โโโโโโ"] { | |
color: #999; | |
background-color: #f0f0f0; | |
text-align: center; | |
} | |
/* ไธๆๆกๆปๅจๆกๆ ทๅผ */ | |
.gr-dropdown select { | |
max-height: 200px; | |
overflow-y: auto; | |
} | |
/* ไธๆๆก้้กนๅฎนๅจๆ ทๅผ */ | |
.gr-dropdown .choices__list { | |
max-height: 200px; | |
overflow-y: auto; | |
} | |
.gr-dropdown .choices__list--dropdown { | |
max-height: 200px; | |
overflow-y: auto; | |
border: 1px solid #e5e7eb; | |
border-radius: 6px; | |
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1); | |
} | |
/* ็กฎไฟไธๆๆกๅฎนๅจไธ่ขซ่ฃๅช */ | |
.gr-dropdown { | |
position: relative; | |
z-index: 1000; | |
} | |
/* ่ชๅฎไนๆปๅจๆกๆ ทๅผ - WebKitๆต่งๅจ */ | |
.gr-dropdown select::-webkit-scrollbar, | |
.gr-dropdown .choices__list::-webkit-scrollbar { | |
width: 8px; | |
} | |
.gr-dropdown select::-webkit-scrollbar-track, | |
.gr-dropdown .choices__list::-webkit-scrollbar-track { | |
background: #f1f1f1; | |
border-radius: 4px; | |
} | |
.gr-dropdown select::-webkit-scrollbar-thumb, | |
.gr-dropdown .choices__list::-webkit-scrollbar-thumb { | |
background: #c1c1c1; | |
border-radius: 4px; | |
} | |
.gr-dropdown select::-webkit-scrollbar-thumb:hover, | |
.gr-dropdown .choices__list::-webkit-scrollbar-thumb:hover { | |
background: #a1a1a1; | |
} | |
/* Firefoxๆปๅจๆกๆ ทๅผ */ | |
.gr-dropdown select, | |
.gr-dropdown .choices__list { | |
scrollbar-width: thin; | |
scrollbar-color: #c1c1c1 #f1f1f1; | |
} | |
/* ๅบ็ก็ปไปถๆ ทๅผ */ | |
.gr-group { | |
background: white; | |
border-radius: 8px; | |
padding: 16px; | |
margin: 8px 0; | |
box-shadow: 0 2px 4px rgba(0,0,0,0.1); | |
} | |
.gr-button { | |
background: #3b82f6; | |
color: white; | |
border: none; | |
border-radius: 6px; | |
padding: 12px 24px; | |
font-weight: 600; | |
} | |
.gr-image { | |
border-radius: 8px; | |
height: 400px; | |
} | |
/* ๅๅบๅผ่ฎพ่ฎก */ | |
@media (max-width: 768px) { | |
.gradio-container { | |
padding: 12px; | |
} | |
.gr-image { | |
height: 300px; | |
} | |
} | |
""" | |
with gr.Blocks(css=css, theme=gr.themes.Soft(), title="ZIP Crowd Counting") as demo: | |
gr.Markdown(""" | |
# ๐ฏ Crowd Counting by ZIP | |
### Upload an image and get precise crowd density predictions with ZIP models! | |
""") | |
# ๆทปๅ ไฟกๆฏ้ขๆฟ | |
with gr.Accordion("โน๏ธ About ZIP", open=True): | |
gr.Markdown(""" | |
**ZIP (Zero-Inflated Poisson)** is a framework designed for crowd counting, a task where the goal is to estimate how many people are present in an image. It was introduced in the paper [ZIP: Scalable Crowd Counting via Zero-Inflated Poisson Modeling](https://arxiv.org/abs/2506.19955). | |
ZIP is based on a simple idea: not all empty areas in an image mean the same thing. Some regions are empty because there are truly no people there (like walls or sky), while others are places where people could appear but just happen not to in this particular image. ZIP separates these two cases using two prediction heads: | |
- **Structural Zeros**: These are regions that naturally never contain people (e.g., the background or torso areas). These are handled by the ฯ head. | |
- **Sampling Zeros**: These are regions where people could appear but don't in this image. These are modeled by the ฮป head. | |
By separating *where* people are likely to be from *how many* are present, ZIP produces more accurate and interpretable crowd estimates, especially in scenes with large empty spaces or varied crowd densities. | |
Choose from different model variants: **ZIP-B** (Base), **ZIP-S** (Small), **ZIP-T** (Tiny), **ZIP-N** (Nano), **ZIP-P** (Pico) | |
""") | |
# ็ฌฌไบ่ก๏ผๆจกๅ้ ็ฝฎใ็ถๆๅ้ขๆต็ปๆ๏ผไธๅ็ญๅฎฝ๏ผ | |
with gr.Row(): | |
with gr.Column(scale=1): | |
with gr.Group(): | |
model_dropdown = gr.Dropdown( | |
choices=pretrained_models, | |
value="ZIP-B @ NWPU-Crowd @ MAE", | |
label="๐๏ธ Select Model & Dataset", | |
info="Choose model variant, dataset, and evaluation metric", | |
allow_custom_value=False, | |
filterable=True, | |
max_choices=None | |
) | |
with gr.Column(scale=1): | |
with gr.Group(): | |
model_status = gr.Textbox( | |
label="๐ Model Status", | |
value="๐ No model loaded", | |
interactive=False, | |
elem_classes=["status-display"], | |
lines=2 | |
) | |
with gr.Column(scale=1): | |
with gr.Group(): | |
output_text = gr.Textbox( | |
label="๐ง Predicted Count", | |
value="", | |
interactive=False, | |
info="Total number of people detected", | |
lines=1 | |
) | |
# ็ฌฌไธ่ก๏ผไธป่ฆๅพๅ๏ผ่พๅ ฅๅพๅใๅฏๅบฆๅพใLambdaๅพ๏ผ | |
with gr.Row(): | |
with gr.Column(scale=1): | |
with gr.Group(): | |
input_img = gr.Image( | |
label="๐ธ Upload Image", | |
sources=["upload", "clipboard"], | |
type="pil", | |
height=360 | |
) | |
submit_btn = gr.Button( | |
"๐ Analyze Crowd", | |
variant="primary", | |
size="lg" | |
) | |
with gr.Column(scale=1): | |
with gr.Group(): | |
output_den_map = gr.Image( | |
label="๐ฏ Predicted Density Map", | |
type="pil", | |
height=400 | |
) | |
with gr.Column(scale=1): | |
with gr.Group(): | |
output_lambda_map = gr.Image( | |
label="๐ Lambda Map", | |
type="pil", | |
height=400 | |
) | |
# ็ฌฌๅ่ก๏ผZero Analysis - ๅ จๅฎฝ๏ผๅ ้จไธๅ็ญๅฎฝ | |
with gr.Group(): | |
gr.Markdown("### ๐ Zero Analysis") | |
gr.Markdown("*Explore different types of zero predictions in crowd analysis*") | |
with gr.Row(): | |
with gr.Column(scale=1): | |
output_structural_zero_map = gr.Image( | |
label="๐๏ธ Structural Zero Map", | |
type="pil", | |
height=400, | |
elem_classes=["zero-analysis-image"] | |
) | |
with gr.Column(scale=1): | |
output_sampling_zero_map = gr.Image( | |
label="๐ Sampling Zero Map", | |
type="pil", | |
height=400, | |
elem_classes=["zero-analysis-image"] | |
) | |
with gr.Column(scale=1): | |
output_complete_zero_map = gr.Image( | |
label="๐บ Complete Zero Map", | |
type="pil", | |
height=400, | |
elem_classes=["zero-analysis-image"] | |
) | |
# ๅฝๆจกๅๅๅๆถ๏ผ่ชๅจๆดๆฐๆจกๅ | |
def on_model_change(variant_dataset_metric): | |
# ๅฆๆ้ๆฉ็ๆฏๅๅฒ็บฟ๏ผไฟๆๅฝๅ้ๆฉไธๅ | |
if "โโโโโโ" in variant_dataset_metric: | |
return "โ ๏ธ Please select a valid model configuration" | |
result = update_model_if_needed(variant_dataset_metric) | |
if "Model configuration set:" in result: | |
return f"โ {result}" | |
elif "Model configuration:" in result: | |
return f"๐ {result}" | |
else: | |
return f"โ {result}" | |
model_dropdown.change( | |
fn=on_model_change, | |
inputs=[model_dropdown], | |
outputs=[model_status] | |
) | |
# ้กต้ขๅ ่ฝฝๆถ่ฎพ็ฝฎ้ป่ฎคๆจกๅ้ ็ฝฎ๏ผไธๅจไธป่ฟ็จไธญๅ ่ฝฝๆจกๅ๏ผ | |
demo.load( | |
fn=lambda: f"โ {update_model_if_needed('ZIP-B @ NWPU-Crowd @ MAE')}", | |
outputs=[model_status] | |
) | |
submit_btn.click( | |
fn=predict, | |
inputs=[input_img, model_dropdown], | |
outputs=[input_img, output_den_map, output_lambda_map, output_text, output_structural_zero_map, output_sampling_zero_map, output_complete_zero_map] | |
) | |
# ็พๅ็คบไพๅบๅ | |
with gr.Accordion("๐ผ๏ธ Try Example Images", open=True): | |
gr.Markdown("**Click on any example below to test the model:**") | |
gr.Examples( | |
examples=[ | |
["example1.jpg"], ["example2.jpg"], ["example3.jpg"], ["example4.jpg"], | |
["example5.jpg"], ["example6.jpg"], ["example7.jpg"], ["example8.jpg"], | |
["example9.jpg"], ["example10.jpg"], ["example11.jpg"], ["example12.jpg"] | |
], | |
inputs=input_img, | |
label="๐ Example Gallery", | |
examples_per_page=12 | |
) | |
# ๆทปๅ ไฝฟ็จ่ฏดๆ | |
with gr.Accordion("๐ How to Use", open=True): | |
gr.Markdown(""" | |
### Step-by-step Guide: | |
1. **๐๏ธ Select Model**: Choose your preferred model variant, pre-training dataset, and pre-training evaluation metric from the dropdown | |
2. **๐ธ Upload Image**: Click the image area to upload your crowd photo or use clipboard | |
3. **๐ Analyze**: Click the "Analyze Crowd" button to start processing | |
4. **๐ View Results**: Examine the density maps and crowd count in the output panels | |
### Understanding the Outputs: | |
**๐ Main Results:** | |
- **๐ฏ Density Map**: Shows where people are located with color intensity, modeled by (1-ฯ) * ฮป | |
- **๐ง Predicted Count**: Total number of people detected in the image | |
**๐ Zero Analysis:** | |
- **๐๏ธ Structural Zero Map**: Indicates regions that structurally cannot contain head annotations (e.g., walls, sky, torso, or background). These are governed by the ฯ head, which estimates the probability that a region never contains people. | |
- **๐ Sampling Zero Map**: Shows areas where people could be present but happen not to appear in the current image. These zeros are modeled by (1-ฯ) * exp(-ฮป), where the expected count ฮป is near zero. | |
- **๐บ Complete Zero Map**: A combined visualization of zero probabilities, capturing both structural and sampling zeros. This map reflects overall non-crowd likelihood per region. | |
**๐ฅ Hotspots:** | |
- **๐ Lambda Map**: Highlights areas with high expected crowd density. Each value represents the expected number of people in that region, modeled by the Poisson intensity (ฮป). This map focuses on *how many* people are likely to be present, **WITHOUT** assuming people could appear there. โ ๏ธ Lambda Map **NEEDS** to be combined with Structural Zero Map by (1-ฯ) * ฮป to produce the final density map. | |
""") | |
# ๆทปๅ ๆๆฏไฟกๆฏ | |
with gr.Accordion("๐ฌ Technical Details", open=True): | |
gr.Markdown(""" | |
### Model Variants: | |
- **ZIP-B**: Base model with best performance | |
- **ZIP-S**: Small model for faster inference | |
- **ZIP-T**: Tiny model for resource-constrained environments | |
- **ZIP-N**: Nano model for mobile applications | |
- **ZIP-P**: Pico model for edge devices | |
### Pre-trainining Datasets: | |
- **ShanghaiTech A**: Dense, low-resolution crowd scenes | |
- **ShanghaiTech B**: Sparse, high-resolution crowd scenes | |
- **UCF-QNRF**: Dense, ultra high-resolution crowd images | |
- **NWPU-Crowd**: Largest ultra high-resolution crowd counting dataset | |
### Pre-trainining Evaluation Metrics: | |
- **MAE**: Mean Absolute Error - average counting error. | |
- **NAE**: Normalized Absolute Error - relative counting error | |
""") | |
demo.launch( | |
server_name="0.0.0.0", | |
server_port=7860, | |
show_api=False, | |
share=False | |
) |