ZIP / app.py
Yiming-M's picture
2025-08-01 10:55 ๐Ÿ›
12bcdef
import torch
from torch import nn
import torch.nn.functional as F
import torchvision.transforms.functional as TF
from torch.amp import autocast
from torch import Tensor
import spaces
import numpy as np
from PIL import Image
import gradio as gr
from matplotlib import cm
from huggingface_hub import hf_hub_download
from warnings import warn
from models import get_model
mean = (0.485, 0.456, 0.406)
std = (0.229, 0.224, 0.225)
alpha = 0.8
EPS = 1e-8
loaded_model = None
current_model_config = {"variant": None, "dataset": None, "metric": None}
pretrained_models = [
"ZIP-B @ ShanghaiTech A @ MAE", "ZIP-B @ ShanghaiTech A @ NAE",
"ZIP-B @ ShanghaiTech B @ MAE", "ZIP-B @ ShanghaiTech B @ NAE",
"ZIP-B @ UCF-QNRF @ MAE", "ZIP-B @ UCF-QNRF @ NAE",
"ZIP-B @ NWPU-Crowd @ MAE", "ZIP-B @ NWPU-Crowd @ NAE",
"โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”",
"ZIP-S @ ShanghaiTech A @ MAE", "ZIP-S @ ShanghaiTech A @ NAE",
"ZIP-S @ ShanghaiTech B @ MAE", "ZIP-S @ ShanghaiTech B @ NAE",
"ZIP-S @ UCF-QNRF @ MAE", "ZIP-S @ UCF-QNRF @ NAE",
"โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”",
"ZIP-T @ ShanghaiTech A @ MAE", "ZIP-T @ ShanghaiTech A @ NAE",
"ZIP-T @ ShanghaiTech B @ MAE", "ZIP-T @ ShanghaiTech B @ NAE",
"ZIP-T @ UCF-QNRF @ MAE", "ZIP-T @ UCF-QNRF @ NAE",
"โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”",
"ZIP-N @ ShanghaiTech A @ MAE", "ZIP-N @ ShanghaiTech A @ NAE",
"ZIP-N @ ShanghaiTech B @ MAE", "ZIP-N @ ShanghaiTech B @ NAE",
"ZIP-N @ UCF-QNRF @ MAE", "ZIP-N @ UCF-QNRF @ NAE",
"โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”",
"ZIP-P @ ShanghaiTech A @ MAE", "ZIP-P @ ShanghaiTech A @ NAE",
"ZIP-P @ ShanghaiTech B @ MAE", "ZIP-P @ ShanghaiTech B @ NAE",
"ZIP-P @ UCF-QNRF @ MAE", "ZIP-P @ UCF-QNRF @ NAE",
]
# -----------------------------
# Model management functions
# -----------------------------
def update_model_if_needed(variant_dataset_metric: str):
"""
Load a new model only if the configuration has changed.
"""
global loaded_model, current_model_config
# ๅฆ‚ๆžœๆ˜ฏๅˆ†ๅ‰ฒ็บฟ๏ผŒๅˆ™่ทณ่ฟ‡
if "โ”โ”โ”โ”โ”โ”" in variant_dataset_metric:
return "Please select a valid model configuration"
parts = variant_dataset_metric.split(" @ ")
if len(parts) != 3:
return "Invalid model configuration format"
variant, dataset, metric = parts[0], parts[1], parts[2].lower()
if dataset == "ShanghaiTech A":
dataset_name = "sha"
elif dataset == "ShanghaiTech B":
dataset_name = "shb"
elif dataset == "UCF-QNRF":
dataset_name = "qnrf"
elif dataset == "NWPU-Crowd":
dataset_name = "nwpu"
else:
return f"Unknown dataset: {dataset}"
# ๅชๆ›ดๆ–ฐ้…็ฝฎ๏ผŒไธๅœจไธป่ฟ›็จ‹ไธญๅŠ ่ฝฝๆจกๅž‹
if (current_model_config["variant"] != variant or
current_model_config["dataset"] != dataset_name or
current_model_config["metric"] != metric):
print(f"Model configuration updated: {variant} @ {dataset} with {metric} metric")
current_model_config = {"variant": variant, "dataset": dataset_name, "metric": metric}
loaded_model = None # ้‡็ฝฎๆจกๅž‹๏ผŒๅฐ†ๅœจGPU่ฟ›็จ‹ไธญ้‡ๆ–ฐๅŠ ่ฝฝ
return f"Model configuration set: {variant} @ {dataset} ({metric})"
else:
print(f"Model configuration unchanged: {variant} @ {dataset} with {metric} metric")
return f"Model configuration: {variant} @ {dataset} ({metric})"
# -----------------------------
# Define the model architecture
# -----------------------------
def load_model(variant: str, dataset: str = "ShanghaiTech B", metric: str = "mae"):
""" Load the model weights from the Hugging Face Hub."""
# global loaded_model
# Build model
model_info_path = hf_hub_download(
repo_id=f"Yiming-M/{variant}",
filename=f"checkpoints/{dataset}/best_{metric}.pth",
)
model = get_model(model_info_path=model_info_path)
model.eval()
# loaded_model = model
return model
def _calc_size(
img_w: int,
img_h: int,
min_size: int,
max_size: int,
base: int = 32
):
"""
This function generates a new size for an image while keeping the aspect ratio. The new size should be within the given range (min_size, max_size).
Args:
img_w (int): The width of the image.
img_h (int): The height of the image.
min_size (int): The minimum size of the edges of the image.
max_size (int): The maximum size of the edges of the image.
# base (int): The base number to which the new size should be a multiple of.
"""
assert min_size % base == 0, f"min_size ({min_size}) must be a multiple of {base}"
if max_size != float("inf"):
assert max_size % base == 0, f"max_size ({max_size}) must be a multiple of {base} if provided"
assert min_size <= max_size, f"min_size ({min_size}) must be less than or equal to max_size ({max_size})"
aspect_ratios = (img_w / img_h, img_h / img_w)
if min_size / max_size <= min(aspect_ratios) <= max(aspect_ratios) <= max_size / min_size: # possible to resize and preserve the aspect ratio
if min_size <= min(img_w, img_h) <= max(img_w, img_h) <= max_size: # already within the range, no need to resize
ratio = 1.
elif min(img_w, img_h) < min_size: # smaller than the minimum size, resize to the minimum size
ratio = min_size / min(img_w, img_h)
else: # larger than the maximum size, resize to the maximum size
ratio = max_size / max(img_w, img_h)
new_w, new_h = int(round(img_w * ratio / base) * base), int(round(img_h * ratio / base) * base)
new_w = max(min_size, min(max_size, new_w))
new_h = max(min_size, min(max_size, new_h))
return new_w, new_h
else: # impossible to resize and preserve the aspect ratio
msg = f"Impossible to resize {img_w}x{img_h} image while preserving the aspect ratio to a size within the range ({min_size}, {max_size}). Will not limit the maximum size."
warn(msg)
return _calc_size(img_w, img_h, min_size, float("inf"), base)
# -----------------------------
# Preprocessing function
# -----------------------------
# Adjust the image transforms to match what your model expects.
def transform(image: Image.Image, dataset_name: str) -> Tensor:
assert isinstance(image, Image.Image), "Input must be a PIL Image"
image_tensor = TF.to_tensor(image)
if dataset_name == "sha":
min_size = 448
max_size = float("inf")
elif dataset_name == "shb":
min_size = 448
max_size = float("inf")
elif dataset_name == "qnrf":
min_size = 448
max_size = 2048
elif dataset_name == "nwpu":
min_size = 448
max_size = 3072
image_height, image_width = image_tensor.shape[-2:]
new_width, new_height = _calc_size(
img_w=image_width,
img_h=image_height,
min_size=min_size,
max_size=max_size,
base=32
)
if new_height != image_height or new_width != image_width:
image_tensor = TF.resize(image_tensor, size=(new_height, new_width), interpolation=TF.InterpolationMode.BICUBIC, antialias=True)
image_tensor = TF.normalize(image_tensor, mean=mean, std=std)
return image_tensor.unsqueeze(0) # Add batch dimension
def _sliding_window_predict(
model: nn.Module,
image: Tensor,
window_size: int,
stride: int,
max_num_windows: int = 256
):
assert len(image.shape) == 4, f"Image must be a 4D tensor (1, c, h, w), got {image.shape}"
window_size = (int(window_size), int(window_size)) if isinstance(window_size, (int, float)) else window_size
stride = (int(stride), int(stride)) if isinstance(stride, (int, float)) else stride
window_size = tuple(window_size)
stride = tuple(stride)
assert isinstance(window_size, tuple) and len(window_size) == 2 and window_size[0] > 0 and window_size[1] > 0, f"Window size must be a positive integer tuple (h, w), got {window_size}"
assert isinstance(stride, tuple) and len(stride) == 2 and stride[0] > 0 and stride[1] > 0, f"Stride must be a positive integer tuple (h, w), got {stride}"
assert stride[0] <= window_size[0] and stride[1] <= window_size[1], f"Stride must be smaller than window size, got {stride} and {window_size}"
image_height, image_width = image.shape[-2:]
window_height, window_width = window_size
assert image_height >= window_height and image_width >= window_width, f"Image size must be larger than window size, got image size {image.shape} and window size {window_size}"
stride_height, stride_width = stride
num_rows = int(np.ceil((image_height - window_height) / stride_height) + 1)
num_cols = int(np.ceil((image_width - window_width) / stride_width) + 1)
if hasattr(model, "block_size"):
block_size = model.block_size
elif hasattr(model, "module") and hasattr(model.module, "block_size"):
block_size = model.module.block_size
else:
raise ValueError("Model must have block_size attribute")
assert window_height % block_size == 0 and window_width % block_size == 0, f"Window size must be divisible by block size, got {window_size} and {block_size}"
windows = []
for i in range(num_rows):
for j in range(num_cols):
x_start, y_start = i * stride_height, j * stride_width
x_end, y_end = x_start + window_height, y_start + window_width
if x_end > image_height:
x_start, x_end = image_height - window_height, image_height
if y_end > image_width:
y_start, y_end = image_width - window_width, image_width
window = image[:, :, x_start:x_end, y_start:y_end]
windows.append(window)
windows = torch.cat(windows, dim=0).to(image.device) # batched windows, shape: (num_windows, c, h, w)
model.eval()
pi_maps, lambda_maps = [], []
for i in range(0, len(windows), max_num_windows):
with torch.no_grad(), autocast(device_type="cuda" if torch.cuda.is_available() else "cpu"):
image_feats = model.backbone(windows[i: min(i + max_num_windows, len(windows))])
pi_image_feats, lambda_image_feats = model.pi_head(image_feats), model.lambda_head(image_feats)
pi_image_feats = F.normalize(pi_image_feats.permute(0, 2, 3, 1), p=2, dim=-1) # shape (B, H, W, C)
lambda_image_feats = F.normalize(lambda_image_feats.permute(0, 2, 3, 1), p=2, dim=-1) # shape (B, H, W, C)
pi_text_feats, lambda_text_feats = model.pi_text_feats, model.lambda_text_feats
pi_logit_scale, lambda_logit_scale = model.pi_logit_scale.exp(), model.lambda_logit_scale.exp()
pi_logit_map = pi_logit_scale * pi_image_feats @ pi_text_feats.t() # (B, H, W, 2), logits per image
lambda_logit_map = lambda_logit_scale * lambda_image_feats @ lambda_text_feats.t() # (B, H, W, N - 1), logits per image
pi_logit_map = pi_logit_map.permute(0, 3, 1, 2) # (B, 2, H, W)
lambda_logit_map = lambda_logit_map.permute(0, 3, 1, 2) # (B, N - 1, H, W)
lambda_map = (lambda_logit_map.softmax(dim=1) * model.bin_centers[:, 1:]).sum(dim=1, keepdim=True) # (B, 1, H, W)
pi_map = pi_logit_map.softmax(dim=1)[:, 0:1] # (B, 1, H, W)
pi_maps.append(pi_map.cpu().numpy())
lambda_maps.append(lambda_map.cpu().numpy())
# assemble the density map
pi_maps = np.concatenate(pi_maps, axis=0) # shape: (num_windows, 1, H, W)
lambda_maps = np.concatenate(lambda_maps, axis=0) # shape: (num_windows, 1, H, W)
assert pi_maps.shape == lambda_maps.shape, f"pi_maps and lambda_maps must have the same shape, got {pi_maps.shape} and {lambda_maps.shape}"
pi_map = np.zeros((pi_maps.shape[1], image_height // block_size, image_width // block_size), dtype=np.float32)
lambda_map = np.zeros((lambda_maps.shape[1], image_height // block_size, image_width // block_size), dtype=np.float32)
count_map = np.zeros((pi_maps.shape[1], image_height // block_size, image_width // block_size), dtype=np.float32)
idx = 0
for i in range(num_rows):
for j in range(num_cols):
x_start, y_start = i * stride_height, j * stride_width
x_end, y_end = x_start + window_height, y_start + window_width
if x_end > image_height:
x_start, x_end = image_height - window_height, image_height
if y_end > image_width:
y_start, y_end = image_width - window_width, image_width
pi_map[:, (x_start // block_size): (x_end // block_size), (y_start // block_size): (y_end // block_size)] += pi_maps[idx, :, :, :]
lambda_map[:, (x_start // block_size): (x_end // block_size), (y_start // block_size): (y_end // block_size)] += lambda_maps[idx, :, :, :]
count_map[:, (x_start // block_size): (x_end // block_size), (y_start // block_size): (y_end // block_size)] += 1.
idx += 1
# average the density map
pi_map /= count_map
lambda_map /= count_map
# convert to Tensor and reshape
pi_map = torch.from_numpy(pi_map).unsqueeze(0) # shape: (1, 1, H // block_size, W // block_size)
lambda_map = torch.from_numpy(lambda_map).unsqueeze(0) # shape: (1, 1, H // block_size, W // block_size)
return pi_map, lambda_map
# -----------------------------
# Inference function
# -----------------------------
@spaces.GPU(duration=120)
def predict(image: Image.Image, variant_dataset_metric: str):
"""
Given an input image, preprocess it, run the model to obtain a density map,
compute the total crowd count, and prepare the density map for display.
"""
global loaded_model, current_model_config
# ๅœจGPU่ฟ›็จ‹ไธญๅฎšไน‰device
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# ๅฆ‚ๆžœ้€‰ๆ‹ฉ็š„ๆ˜ฏๅˆ†ๅ‰ฒ็บฟ๏ผŒ่ฟ”ๅ›ž้”™่ฏฏไฟกๆฏ
if "โ”โ”โ”โ”โ”โ”" in variant_dataset_metric:
return image, None, None, "โš ๏ธ Please select a valid model configuration", None, None, None
parts = variant_dataset_metric.split(" @ ")
if len(parts) != 3:
return image, None, None, "โŒ Invalid model configuration format", None, None, None
variant, dataset, metric = parts[0], parts[1], parts[2].lower()
if dataset == "ShanghaiTech A":
dataset_name = "sha"
elif dataset == "ShanghaiTech B":
dataset_name = "shb"
elif dataset == "UCF-QNRF":
dataset_name = "qnrf"
elif dataset == "NWPU-Crowd":
dataset_name = "nwpu"
else:
return image, None, None, f"โŒ Unknown dataset: {dataset}", None, None, None
# ๅœจGPU่ฟ›็จ‹ไธญๅŠ ่ฝฝๆจกๅž‹๏ผˆๅฆ‚ๆžœ้œ€่ฆ๏ผ‰
if (loaded_model is None or
current_model_config["variant"] != variant or
current_model_config["dataset"] != dataset_name or
current_model_config["metric"] != metric):
print(f"Loading model in GPU process: {variant} @ {dataset} with {metric} metric")
loaded_model = load_model(variant=variant, dataset=dataset_name, metric=metric)
current_model_config = {"variant": variant, "dataset": dataset_name, "metric": metric}
if not hasattr(loaded_model, "input_size"):
if dataset_name == "sha":
loaded_model.input_size = 224
elif dataset_name == "shb":
loaded_model.input_size = 448
elif dataset_name == "qnrf":
loaded_model.input_size = 672
elif dataset_name == "nwpu":
loaded_model.input_size = 672
elif isinstance(loaded_model.input_size, (list, tuple)):
loaded_model.input_size = loaded_model.input_size[0] # Use the first element if it's a list or tuple
else:
assert isinstance(loaded_model.input_size, (int, float)), f"input_size must be an int or float, got {type(loaded_model.input_size)}"
loaded_model.to(device)
# Preprocess the image
input_width, input_height = image.size
image_tensor = transform(image, dataset_name).to(device) # shape: (1, 3, H, W)
input_size = loaded_model.input_size
image_height, image_width = image_tensor.shape[-2:]
aspect_ratio = image_width / image_height
if image_height < input_size:
new_height = input_size
new_width = int(new_height * aspect_ratio)
image_tensor = F.interpolate(image_tensor, size=(new_height, new_width), mode="bicubic", align_corners=False, antialias=True)
image_height, image_width = new_height, new_width
if image_width < input_size:
new_width = input_size
new_height = int(new_width / aspect_ratio)
image_tensor = F.interpolate(image_tensor, size=(new_height, new_width), mode="bicubic", align_corners=False, antialias=True)
image_height, image_width = new_height, new_width
with torch.no_grad():
if hasattr(loaded_model, "num_vpt") and loaded_model.num_vpt is not None and loaded_model.num_vpt > 0: # For ViT models, use sliding window prediction
# For ViT models with VPT
pi_map, lambda_map = _sliding_window_predict(
model=loaded_model,
image=image_tensor,
window_size=input_size,
stride=input_size
)
elif hasattr(loaded_model, "pi_text_feats") and hasattr(loaded_model, "lambda_text_feats") and loaded_model.pi_text_feats is not None and loaded_model.lambda_text_feats is not None: # For other CLIP-based models
image_feats = loaded_model.backbone(image_tensor)
# image_feats = F.normalize(image_feats.permute(0, 2, 3, 1), p=2, dim=-1) # shape (B, H, W, C)
pi_image_feats, lambda_image_feats = loaded_model.pi_head(image_feats), loaded_model.lambda_head(image_feats)
pi_image_feats = F.normalize(pi_image_feats.permute(0, 2, 3, 1), p=2, dim=-1) # shape (B, H, W, C)
lambda_image_feats = F.normalize(lambda_image_feats.permute(0, 2, 3, 1), p=2, dim=-1) # shape (B, H, W, C)
pi_text_feats, lambda_text_feats = loaded_model.pi_text_feats, loaded_model.lambda_text_feats
pi_logit_scale, lambda_logit_scale = loaded_model.pi_logit_scale.exp(), loaded_model.lambda_logit_scale.exp()
pi_logit_map = pi_logit_scale * pi_image_feats @ pi_text_feats.t() # (B, H, W, 2), logits per image
lambda_logit_map = lambda_logit_scale * lambda_image_feats @ lambda_text_feats.t() # (B, H, W, N - 1), logits per image
pi_logit_map = pi_logit_map.permute(0, 3, 1, 2) # (B, 2, H, W)
lambda_logit_map = lambda_logit_map.permute(0, 3, 1, 2) # (B, N - 1, H, W)
lambda_map = (lambda_logit_map.softmax(dim=1) * loaded_model.bin_centers[:, 1:]).sum(dim=1, keepdim=True) # (B, 1, H, W)
pi_map = pi_logit_map.softmax(dim=1)[:, 0:1] # (B, 1, H, W)
else: # For non-CLIP models
x = loaded_model.backbone(image_tensor)
logit_pi_map = loaded_model.pi_head(x) # shape: (B, 2, H, W)
logit_map = loaded_model.bin_head(x) # shape: (B, C, H, W)
lambda_map= (logit_map.softmax(dim=1) * loaded_model.bin_centers[:, 1:]).sum(dim=1, keepdim=True) # shape: (B, 1, H, W)
pi_map = logit_pi_map.softmax(dim=1)[:, 0:1] # shape: (B, 1, H, W)
den_map = (1.0 - pi_map) * lambda_map # shape: (B, 1, H, W)
count = den_map.sum().item()
strucrual_zero_map = F.interpolate(
pi_map, size=(input_height, input_width), mode="bilinear", align_corners=False, antialias=True
).cpu().squeeze().numpy()
lambda_map = F.interpolate(
lambda_map, size=(input_height, input_width), mode="bilinear", align_corners=False, antialias=True
).cpu().squeeze().numpy()
den_map = F.interpolate(
den_map, size=(input_height, input_width), mode="bilinear", align_corners=False, antialias=True
).cpu().squeeze().numpy()
sampling_zero_map = (1.0 - strucrual_zero_map) * np.exp(-lambda_map)
complete_zero_map = strucrual_zero_map + sampling_zero_map
# Normalize maps for display purposes
def normalize_map(x: np.ndarray) -> np.ndarray:
""" Normalize the map to [0, 1] range for visualization. """
x_min = np.min(x)
x_max = np.max(x)
if x_max - x_min < EPS:
return np.zeros_like(x)
return (x - x_min) / (x_max - x_min + EPS)
# strucrual_zero_map = normalize_map(strucrual_zero_map)
# sampling_zero_map = normalize_map(sampling_zero_map)
lambda_map = normalize_map(lambda_map)
# den_map = normalize_map(den_map)
# complete_zero_map = normalize_map(complete_zero_map)
# Apply a colormap for better visualization
# Options: 'viridis', 'plasma', 'hot', 'inferno', 'jet' (recommended)
colormap = cm.get_cmap("jet")
# The colormap returns values in [0,1]. Scale to [0,255] and convert to uint8.
den_map = (colormap(den_map) * 255).astype(np.uint8)
strucrual_zero_map = (colormap(strucrual_zero_map) * 255).astype(np.uint8)
sampling_zero_map = (colormap(sampling_zero_map) * 255).astype(np.uint8)
lambda_map = (colormap(lambda_map) * 255).astype(np.uint8)
complete_zero_map = (colormap(complete_zero_map) * 255).astype(np.uint8)
# Convert to PIL images
den_map = Image.fromarray(den_map).convert("RGBA")
strucrual_zero_map = Image.fromarray(strucrual_zero_map).convert("RGBA")
sampling_zero_map = Image.fromarray(sampling_zero_map).convert("RGBA")
lambda_map = Image.fromarray(lambda_map).convert("RGBA")
complete_zero_map = Image.fromarray(complete_zero_map).convert("RGBA")
# Ensure the original image is in RGBA format.
image_rgba = image.convert("RGBA")
den_map = Image.blend(image_rgba, den_map, alpha=alpha)
strucrual_zero_map = Image.blend(image_rgba, strucrual_zero_map, alpha=alpha)
sampling_zero_map = Image.blend(image_rgba, sampling_zero_map, alpha=alpha)
lambda_map = Image.blend(image_rgba, lambda_map, alpha=alpha)
complete_zero_map = Image.blend(image_rgba, complete_zero_map, alpha=alpha)
# ๆ ผๅผๅŒ–่ฎกๆ•ฐๆ˜พ็คบ
count_display = f"๐Ÿ‘ฅ {round(count, 2)} people detected"
if count < 1:
count_display = "๐Ÿ‘ค Less than 1 person detected"
elif count == 1:
count_display = "๐Ÿ‘ค 1 person detected"
elif count < 10:
count_display = f"๐Ÿ‘ฅ {round(count, 1)} people detected"
else:
count_display = f"๐Ÿ‘ฅ {round(count)} people detected"
return image, den_map, lambda_map, count_display, strucrual_zero_map, sampling_zero_map, complete_zero_map
# -----------------------------
# Build Gradio Interface using Blocks for a two-column layout
# -----------------------------
css = """
/* ๅฏผๅ…ฅ็ง‘ๆŠ€ๆ„Ÿๅญ—ไฝ“ */
@import url('https://fonts.googleapis.com/css2?family=Inter:wght@300;400;500;600;700;800&family=JetBrains+Mono:wght@400;500;600;700&family=Fira+Code:wght@300;400;500;600&display=swap');
/* ๅŸบ็ก€ๆ ทๅผ - ไฟๆŒๅŠŸ่ƒฝๆ€ง */
.gradio-container {
max-width: 1600px;
margin: 0 auto;
padding: 20px;
font-family: 'Inter', -apple-system, BlinkMacSystemFont, 'Segoe UI', system-ui, sans-serif;
}
/* ๆ ‡้ข˜ไฝฟ็”จ็ง‘ๆŠ€ๆ„Ÿๅญ—ไฝ“ */
.gr-markdown h1 {
font-family: 'JetBrains Mono', 'Fira Code', monospace;
font-weight: 700;
text-align: center;
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
-webkit-background-clip: text;
-webkit-text-fill-color: transparent;
letter-spacing: -0.02em;
}
.gr-markdown h2, .gr-markdown h3 {
font-family: 'Inter', sans-serif;
font-weight: 600;
letter-spacing: -0.01em;
}
/* ไปฃ็ ๅ’ŒๆŠ€ๆœฏๆ–‡ๆœฌไฝฟ็”จ็ญ‰ๅฎฝๅญ—ไฝ“ */
.gr-textbox[label*="Status"],
.gr-textbox[label*="Count"],
code, pre {
font-family: 'JetBrains Mono', 'Fira Code', 'Roboto Mono', monospace;
}
/* ๆŒ‰้’ฎไฝฟ็”จ็Žฐไปฃๅญ—ไฝ“ */
.gr-button {
font-family: 'Inter', sans-serif;
font-weight: 600;
letter-spacing: 0.01em;
}
/* ็ฎ€ๅ•็š„ๅˆ†ๅ‰ฒ็บฟๆ ทๅผ */
option[value*="โ”โ”โ”โ”โ”โ”"] {
color: #999;
background-color: #f0f0f0;
text-align: center;
}
/* ไธ‹ๆ‹‰ๆก†ๆป‘ๅŠจๆกๆ ทๅผ */
.gr-dropdown select {
max-height: 200px;
overflow-y: auto;
}
/* ไธ‹ๆ‹‰ๆก†้€‰้กนๅฎนๅ™จๆ ทๅผ */
.gr-dropdown .choices__list {
max-height: 200px;
overflow-y: auto;
}
.gr-dropdown .choices__list--dropdown {
max-height: 200px;
overflow-y: auto;
border: 1px solid #e5e7eb;
border-radius: 6px;
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
}
/* ็กฎไฟไธ‹ๆ‹‰ๆก†ๅฎนๅ™จไธ่ขซ่ฃๅ‰ช */
.gr-dropdown {
position: relative;
z-index: 1000;
}
/* ่‡ชๅฎšไน‰ๆปšๅŠจๆกๆ ทๅผ - WebKitๆต่งˆๅ™จ */
.gr-dropdown select::-webkit-scrollbar,
.gr-dropdown .choices__list::-webkit-scrollbar {
width: 8px;
}
.gr-dropdown select::-webkit-scrollbar-track,
.gr-dropdown .choices__list::-webkit-scrollbar-track {
background: #f1f1f1;
border-radius: 4px;
}
.gr-dropdown select::-webkit-scrollbar-thumb,
.gr-dropdown .choices__list::-webkit-scrollbar-thumb {
background: #c1c1c1;
border-radius: 4px;
}
.gr-dropdown select::-webkit-scrollbar-thumb:hover,
.gr-dropdown .choices__list::-webkit-scrollbar-thumb:hover {
background: #a1a1a1;
}
/* FirefoxๆปšๅŠจๆกๆ ทๅผ */
.gr-dropdown select,
.gr-dropdown .choices__list {
scrollbar-width: thin;
scrollbar-color: #c1c1c1 #f1f1f1;
}
/* ๅŸบ็ก€็ป„ไปถๆ ทๅผ */
.gr-group {
background: white;
border-radius: 8px;
padding: 16px;
margin: 8px 0;
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
}
.gr-button {
background: #3b82f6;
color: white;
border: none;
border-radius: 6px;
padding: 12px 24px;
font-weight: 600;
}
.gr-image {
border-radius: 8px;
height: 400px;
}
/* ๅ“ๅบ”ๅผ่ฎพ่ฎก */
@media (max-width: 768px) {
.gradio-container {
padding: 12px;
}
.gr-image {
height: 300px;
}
}
"""
with gr.Blocks(css=css, theme=gr.themes.Soft(), title="ZIP Crowd Counting") as demo:
gr.Markdown("""
# ๐ŸŽฏ Crowd Counting by ZIP
### Upload an image and get precise crowd density predictions with ZIP models!
""")
# ๆทปๅŠ ไฟกๆฏ้ขๆฟ
with gr.Accordion("โ„น๏ธ About ZIP", open=True):
gr.Markdown("""
**ZIP (Zero-Inflated Poisson)** is a framework designed for crowd counting, a task where the goal is to estimate how many people are present in an image. It was introduced in the paper [ZIP: Scalable Crowd Counting via Zero-Inflated Poisson Modeling](https://arxiv.org/abs/2506.19955).
ZIP is based on a simple idea: not all empty areas in an image mean the same thing. Some regions are empty because there are truly no people there (like walls or sky), while others are places where people could appear but just happen not to in this particular image. ZIP separates these two cases using two prediction heads:
- **Structural Zeros**: These are regions that naturally never contain people (e.g., the background or torso areas). These are handled by the ฯ€ head.
- **Sampling Zeros**: These are regions where people could appear but don't in this image. These are modeled by the ฮป head.
By separating *where* people are likely to be from *how many* are present, ZIP produces more accurate and interpretable crowd estimates, especially in scenes with large empty spaces or varied crowd densities.
Choose from different model variants: **ZIP-B** (Base), **ZIP-S** (Small), **ZIP-T** (Tiny), **ZIP-N** (Nano), **ZIP-P** (Pico)
""")
# ็ฌฌไบŒ่กŒ๏ผšๆจกๅž‹้…็ฝฎใ€็Šถๆ€ๅ’Œ้ข„ๆต‹็ป“ๆžœ๏ผˆไธ‰ๅˆ—็ญ‰ๅฎฝ๏ผ‰
with gr.Row():
with gr.Column(scale=1):
with gr.Group():
model_dropdown = gr.Dropdown(
choices=pretrained_models,
value="ZIP-B @ NWPU-Crowd @ MAE",
label="๐ŸŽ›๏ธ Select Model & Dataset",
info="Choose model variant, dataset, and evaluation metric",
allow_custom_value=False,
filterable=True,
max_choices=None
)
with gr.Column(scale=1):
with gr.Group():
model_status = gr.Textbox(
label="๐Ÿ“Š Model Status",
value="๐Ÿ”„ No model loaded",
interactive=False,
elem_classes=["status-display"],
lines=2
)
with gr.Column(scale=1):
with gr.Group():
output_text = gr.Textbox(
label="๐Ÿง™ Predicted Count",
value="",
interactive=False,
info="Total number of people detected",
lines=1
)
# ็ฌฌไธ‰่กŒ๏ผšไธป่ฆๅ›พๅƒ๏ผˆ่พ“ๅ…ฅๅ›พๅƒใ€ๅฏ†ๅบฆๅ›พใ€Lambdaๅ›พ๏ผ‰
with gr.Row():
with gr.Column(scale=1):
with gr.Group():
input_img = gr.Image(
label="๐Ÿ“ธ Upload Image",
sources=["upload", "clipboard"],
type="pil",
height=360
)
submit_btn = gr.Button(
"๐Ÿš€ Analyze Crowd",
variant="primary",
size="lg"
)
with gr.Column(scale=1):
with gr.Group():
output_den_map = gr.Image(
label="๐ŸŽฏ Predicted Density Map",
type="pil",
height=400
)
with gr.Column(scale=1):
with gr.Group():
output_lambda_map = gr.Image(
label="๐Ÿ“ˆ Lambda Map",
type="pil",
height=400
)
# ็ฌฌๅ››่กŒ๏ผšZero Analysis - ๅ…จๅฎฝ๏ผŒๅ†…้ƒจไธ‰ๅˆ—็ญ‰ๅฎฝ
with gr.Group():
gr.Markdown("### ๐Ÿ” Zero Analysis")
gr.Markdown("*Explore different types of zero predictions in crowd analysis*")
with gr.Row():
with gr.Column(scale=1):
output_structural_zero_map = gr.Image(
label="๐Ÿ—๏ธ Structural Zero Map",
type="pil",
height=400,
elem_classes=["zero-analysis-image"]
)
with gr.Column(scale=1):
output_sampling_zero_map = gr.Image(
label="๐Ÿ“Š Sampling Zero Map",
type="pil",
height=400,
elem_classes=["zero-analysis-image"]
)
with gr.Column(scale=1):
output_complete_zero_map = gr.Image(
label="๐Ÿ‘บ Complete Zero Map",
type="pil",
height=400,
elem_classes=["zero-analysis-image"]
)
# ๅฝ“ๆจกๅž‹ๅ˜ๅŒ–ๆ—ถ๏ผŒ่‡ชๅŠจๆ›ดๆ–ฐๆจกๅž‹
def on_model_change(variant_dataset_metric):
# ๅฆ‚ๆžœ้€‰ๆ‹ฉ็š„ๆ˜ฏๅˆ†ๅ‰ฒ็บฟ๏ผŒไฟๆŒๅฝ“ๅ‰้€‰ๆ‹ฉไธๅ˜
if "โ”โ”โ”โ”โ”โ”" in variant_dataset_metric:
return "โš ๏ธ Please select a valid model configuration"
result = update_model_if_needed(variant_dataset_metric)
if "Model configuration set:" in result:
return f"โœ… {result}"
elif "Model configuration:" in result:
return f"๐Ÿ”„ {result}"
else:
return f"โŒ {result}"
model_dropdown.change(
fn=on_model_change,
inputs=[model_dropdown],
outputs=[model_status]
)
# ้กต้ขๅŠ ่ฝฝๆ—ถ่ฎพ็ฝฎ้ป˜่ฎคๆจกๅž‹้…็ฝฎ๏ผˆไธๅœจไธป่ฟ›็จ‹ไธญๅŠ ่ฝฝๆจกๅž‹๏ผ‰
demo.load(
fn=lambda: f"โœ… {update_model_if_needed('ZIP-B @ NWPU-Crowd @ MAE')}",
outputs=[model_status]
)
submit_btn.click(
fn=predict,
inputs=[input_img, model_dropdown],
outputs=[input_img, output_den_map, output_lambda_map, output_text, output_structural_zero_map, output_sampling_zero_map, output_complete_zero_map]
)
# ็พŽๅŒ–็คบไพ‹ๅŒบๅŸŸ
with gr.Accordion("๐Ÿ–ผ๏ธ Try Example Images", open=True):
gr.Markdown("**Click on any example below to test the model:**")
gr.Examples(
examples=[
["example1.jpg"], ["example2.jpg"], ["example3.jpg"], ["example4.jpg"],
["example5.jpg"], ["example6.jpg"], ["example7.jpg"], ["example8.jpg"],
["example9.jpg"], ["example10.jpg"], ["example11.jpg"], ["example12.jpg"]
],
inputs=input_img,
label="๐Ÿ“š Example Gallery",
examples_per_page=12
)
# ๆทปๅŠ ไฝฟ็”จ่ฏดๆ˜Ž
with gr.Accordion("๐Ÿ“– How to Use", open=True):
gr.Markdown("""
### Step-by-step Guide:
1. **๐ŸŽ›๏ธ Select Model**: Choose your preferred model variant, pre-training dataset, and pre-training evaluation metric from the dropdown
2. **๐Ÿ“ธ Upload Image**: Click the image area to upload your crowd photo or use clipboard
3. **๐Ÿš€ Analyze**: Click the "Analyze Crowd" button to start processing
4. **๐Ÿ“Š View Results**: Examine the density maps and crowd count in the output panels
### Understanding the Outputs:
**๐Ÿ“Š Main Results:**
- **๐ŸŽฏ Density Map**: Shows where people are located with color intensity, modeled by (1-ฯ€) * ฮป
- **๐Ÿง™ Predicted Count**: Total number of people detected in the image
**๐Ÿ” Zero Analysis:**
- **๐Ÿ—๏ธ Structural Zero Map**: Indicates regions that structurally cannot contain head annotations (e.g., walls, sky, torso, or background). These are governed by the ฯ€ head, which estimates the probability that a region never contains people.
- **๐Ÿ“Š Sampling Zero Map**: Shows areas where people could be present but happen not to appear in the current image. These zeros are modeled by (1-ฯ€) * exp(-ฮป), where the expected count ฮป is near zero.
- **๐Ÿ‘บ Complete Zero Map**: A combined visualization of zero probabilities, capturing both structural and sampling zeros. This map reflects overall non-crowd likelihood per region.
**๐Ÿ”ฅ Hotspots:**
- **๐Ÿ“ˆ Lambda Map**: Highlights areas with high expected crowd density. Each value represents the expected number of people in that region, modeled by the Poisson intensity (ฮป). This map focuses on *how many* people are likely to be present, **WITHOUT** assuming people could appear there. โš ๏ธ Lambda Map **NEEDS** to be combined with Structural Zero Map by (1-ฯ€) * ฮป to produce the final density map.
""")
# ๆทปๅŠ ๆŠ€ๆœฏไฟกๆฏ
with gr.Accordion("๐Ÿ”ฌ Technical Details", open=True):
gr.Markdown("""
### Model Variants:
- **ZIP-B**: Base model with best performance
- **ZIP-S**: Small model for faster inference
- **ZIP-T**: Tiny model for resource-constrained environments
- **ZIP-N**: Nano model for mobile applications
- **ZIP-P**: Pico model for edge devices
### Pre-trainining Datasets:
- **ShanghaiTech A**: Dense, low-resolution crowd scenes
- **ShanghaiTech B**: Sparse, high-resolution crowd scenes
- **UCF-QNRF**: Dense, ultra high-resolution crowd images
- **NWPU-Crowd**: Largest ultra high-resolution crowd counting dataset
### Pre-trainining Evaluation Metrics:
- **MAE**: Mean Absolute Error - average counting error.
- **NAE**: Normalized Absolute Error - relative counting error
""")
demo.launch(
server_name="0.0.0.0",
server_port=7860,
show_api=False,
share=False
)