File size: 36,187 Bytes
a7dedf9
 
 
 
3044d99
a7dedf9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bcf1a8b
277670a
a7dedf9
0e1e36c
ae09b40
 
 
 
3044d99
ae09b40
 
 
3044d99
ae09b40
 
 
3044d99
ae09b40
 
 
3044d99
ae09b40
 
 
0e1e36c
a7dedf9
277670a
 
 
e85ffa0
277670a
 
 
 
e85ffa0
 
 
 
 
 
 
 
 
 
277670a
 
 
 
 
 
 
 
 
e85ffa0
 
277670a
61ba3dd
 
277670a
 
 
61ba3dd
277670a
61ba3dd
 
277670a
61ba3dd
 
277670a
 
a7dedf9
 
 
 
 
ccc542d
a7dedf9
 
 
 
 
 
 
 
 
99459bc
 
a7dedf9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8d8c6cc
a7dedf9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3044d99
a7dedf9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e85ffa0
a7dedf9
 
 
 
277670a
ef5adb7
61ba3dd
 
 
e85ffa0
 
9cb167a
e85ffa0
 
 
9cb167a
e85ffa0
 
a7dedf9
ccc542d
 
 
 
 
 
 
 
e85ffa0
9cb167a
a7dedf9
61ba3dd
 
 
 
 
 
 
 
 
 
ccc542d
 
 
 
 
 
 
 
 
ae09b40
 
 
 
449e3d1
a7dedf9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9cb167a
a7dedf9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b564f44
 
 
 
 
 
 
a7dedf9
9a7b741
 
12bcdef
9a7b741
 
a7dedf9
affc2a7
b564f44
 
a7dedf9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9cb167a
 
 
 
 
 
 
 
 
 
 
 
a7dedf9
 
 
 
 
e85ffa0
0547181
 
 
dde77f8
9cb167a
dde77f8
 
 
0547181
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b564f44
 
dde77f8
 
 
 
 
b564f44
 
3044d99
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dde77f8
 
 
 
 
 
 
b564f44
 
dde77f8
 
 
 
 
 
 
b564f44
 
dde77f8
 
 
b564f44
 
dde77f8
 
b564f44
dde77f8
b564f44
 
 
dde77f8
b564f44
9cb167a
e85ffa0
 
9cb167a
 
 
8994c36
9cb167a
 
 
0547181
9cb167a
8994c36
 
 
 
 
 
9cb167a
 
 
a7dedf9
4a2b023
a7dedf9
4a2b023
 
 
 
 
 
3044d99
 
 
 
4a2b023
 
 
9cb167a
4a2b023
 
 
 
 
df60639
4a2b023
b564f44
 
 
 
4a2b023
b564f44
9cb167a
b564f44
df60639
9cb167a
b564f44
 
 
 
9cb167a
 
4a2b023
9cb167a
 
d2e9255
9cb167a
 
 
 
 
 
b564f44
9cb167a
 
b564f44
 
 
 
9cb167a
b564f44
9cb167a
 
b564f44
 
 
 
 
3b32643
b564f44
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a7dedf9
e85ffa0
 
 
 
9cb167a
 
3044d99
9cb167a
3044d99
9cb167a
 
 
277670a
 
 
e85ffa0
277670a
 
 
61ba3dd
ef5adb7
61ba3dd
ef5adb7
 
 
a7dedf9
 
e85ffa0
929bf51
a7dedf9
 
9cb167a
 
 
 
 
3b32643
9cb167a
 
 
 
 
11c9ec8
9cb167a
 
 
0547181
9cb167a
 
 
c628976
9cb167a
 
 
 
 
 
3b32643
8994c36
b564f44
3b32643
 
8994c36
 
b564f44
3b32643
fe5f0a4
 
9cb167a
 
 
0547181
9cb167a
 
 
8994c36
9cb167a
 
 
 
c628976
8994c36
 
 
 
9cb167a
c628976
 
9cb167a
 
 
 
 
12bcdef
9cb167a
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
import torch
from torch import nn
import torch.nn.functional as F
import torchvision.transforms.functional as TF
from torch.amp import autocast

from torch import Tensor
import spaces

import numpy as np
from PIL import Image
import gradio as gr
from matplotlib import cm
from huggingface_hub import hf_hub_download
from warnings import warn

from models import get_model


mean = (0.485, 0.456, 0.406)
std = (0.229, 0.224, 0.225)
alpha = 0.8
EPS = 1e-8
loaded_model = None
current_model_config = {"variant": None, "dataset": None, "metric": None}

pretrained_models = [
    "ZIP-B @ ShanghaiTech A @ MAE", "ZIP-B @ ShanghaiTech A @ NAE",
    "ZIP-B @ ShanghaiTech B @ MAE", "ZIP-B @ ShanghaiTech B @ NAE",
    "ZIP-B @ UCF-QNRF @ MAE", "ZIP-B @ UCF-QNRF @ NAE",
    "ZIP-B @ NWPU-Crowd @ MAE", "ZIP-B @ NWPU-Crowd @ NAE",
    "━━━━━━━━━━━━━━━━━━━━━━━━━━━━",
    "ZIP-S @ ShanghaiTech A @ MAE", "ZIP-S @ ShanghaiTech A @ NAE",
    "ZIP-S @ ShanghaiTech B @ MAE", "ZIP-S @ ShanghaiTech B @ NAE",
    "ZIP-S @ UCF-QNRF @ MAE", "ZIP-S @ UCF-QNRF @ NAE",
    "━━━━━━━━━━━━━━━━━━━━━━━━━━━━",
    "ZIP-T @ ShanghaiTech A @ MAE", "ZIP-T @ ShanghaiTech A @ NAE",
    "ZIP-T @ ShanghaiTech B @ MAE", "ZIP-T @ ShanghaiTech B @ NAE",
    "ZIP-T @ UCF-QNRF @ MAE", "ZIP-T @ UCF-QNRF @ NAE",
    "━━━━━━━━━━━━━━━━━━━━━━━━━━━━",
    "ZIP-N @ ShanghaiTech A @ MAE", "ZIP-N @ ShanghaiTech A @ NAE",
    "ZIP-N @ ShanghaiTech B @ MAE", "ZIP-N @ ShanghaiTech B @ NAE",
    "ZIP-N @ UCF-QNRF @ MAE", "ZIP-N @ UCF-QNRF @ NAE",
    "━━━━━━━━━━━━━━━━━━━━━━━━━━━━",
    "ZIP-P @ ShanghaiTech A @ MAE", "ZIP-P @ ShanghaiTech A @ NAE",
    "ZIP-P @ ShanghaiTech B @ MAE", "ZIP-P @ ShanghaiTech B @ NAE",
    "ZIP-P @ UCF-QNRF @ MAE", "ZIP-P @ UCF-QNRF @ NAE",
]

# -----------------------------
# Model management functions
# -----------------------------
def update_model_if_needed(variant_dataset_metric: str):
    """
    Load a new model only if the configuration has changed.
    """
    global loaded_model, current_model_config
    
    # 如果是分割线,则跳过
    if "━━━━━━" in variant_dataset_metric:
        return "Please select a valid model configuration"
    
    parts = variant_dataset_metric.split(" @ ")
    if len(parts) != 3:
        return "Invalid model configuration format"
        
    variant, dataset, metric = parts[0], parts[1], parts[2].lower()

    if dataset == "ShanghaiTech A":
        dataset_name = "sha"
    elif dataset == "ShanghaiTech B":
        dataset_name = "shb"
    elif dataset == "UCF-QNRF":
        dataset_name = "qnrf"
    elif dataset == "NWPU-Crowd":
        dataset_name = "nwpu"
    else:
        return f"Unknown dataset: {dataset}"

    # 只更新配置,不在主进程中加载模型
    if (current_model_config["variant"] != variant or 
        current_model_config["dataset"] != dataset_name or 
        current_model_config["metric"] != metric):
        
        print(f"Model configuration updated: {variant} @ {dataset} with {metric} metric")
        current_model_config = {"variant": variant, "dataset": dataset_name, "metric": metric}
        loaded_model = None  # 重置模型,将在GPU进程中重新加载
        return f"Model configuration set: {variant} @ {dataset} ({metric})"
    else:
        print(f"Model configuration unchanged: {variant} @ {dataset} with {metric} metric")
        return f"Model configuration: {variant} @ {dataset} ({metric})"


# -----------------------------
# Define the model architecture
# -----------------------------
def load_model(variant: str, dataset: str = "ShanghaiTech B", metric: str = "mae"):
    """ Load the model weights from the Hugging Face Hub."""
    # global loaded_model
    # Build model

    model_info_path = hf_hub_download(
        repo_id=f"Yiming-M/{variant}",
        filename=f"checkpoints/{dataset}/best_{metric}.pth",
    )

    model = get_model(model_info_path=model_info_path)
    model.eval()
    # loaded_model = model
    return model


def _calc_size(
    img_w: int,
    img_h: int,
    min_size: int,
    max_size: int,
    base: int = 32
):
    """
    This function generates a new size for an image while keeping the aspect ratio. The new size should be within the given range (min_size, max_size).

    Args:
        img_w (int): The width of the image.
        img_h (int): The height of the image.
        min_size (int): The minimum size of the edges of the image.
        max_size (int): The maximum size of the edges of the image.
        # base (int): The base number to which the new size should be a multiple of.
    """
    assert min_size % base == 0, f"min_size ({min_size}) must be a multiple of {base}"
    if max_size != float("inf"):
        assert max_size % base == 0, f"max_size ({max_size}) must be a multiple of {base} if provided"

    assert min_size <= max_size, f"min_size ({min_size}) must be less than or equal to max_size ({max_size})"

    aspect_ratios = (img_w / img_h, img_h / img_w)
    if min_size / max_size <= min(aspect_ratios) <= max(aspect_ratios) <= max_size / min_size:  # possible to resize and preserve the aspect ratio
        if min_size <= min(img_w, img_h) <= max(img_w, img_h) <= max_size:  # already within the range, no need to resize
            ratio = 1.
        elif min(img_w, img_h) < min_size:  # smaller than the minimum size, resize to the minimum size
            ratio = min_size / min(img_w, img_h)
        else:  # larger than the maximum size, resize to the maximum size
            ratio = max_size / max(img_w, img_h)

        new_w, new_h = int(round(img_w * ratio / base) * base), int(round(img_h * ratio / base) * base)
        new_w = max(min_size, min(max_size, new_w))
        new_h = max(min_size, min(max_size, new_h))
        return new_w, new_h

    else:  # impossible to resize and preserve the aspect ratio
        msg = f"Impossible to resize {img_w}x{img_h} image while preserving the aspect ratio to a size within the range ({min_size}, {max_size}). Will not limit the maximum size."
        warn(msg)
        return _calc_size(img_w, img_h, min_size, float("inf"), base)
    

# -----------------------------
# Preprocessing function
# -----------------------------
# Adjust the image transforms to match what your model expects.
def transform(image: Image.Image, dataset_name: str) -> Tensor:
    assert isinstance(image, Image.Image), "Input must be a PIL Image"
    image_tensor = TF.to_tensor(image)

    if dataset_name == "sha":
        min_size = 448
        max_size = float("inf")
    elif dataset_name == "shb":
        min_size = 448
        max_size = float("inf")
    elif dataset_name == "qnrf":
        min_size = 448
        max_size = 2048
    elif dataset_name == "nwpu":
        min_size = 448
        max_size = 3072

    image_height, image_width = image_tensor.shape[-2:]
    new_width, new_height = _calc_size(
        img_w=image_width,
        img_h=image_height,
        min_size=min_size,
        max_size=max_size,
        base=32
    )
    if new_height != image_height or new_width != image_width:
        image_tensor = TF.resize(image_tensor, size=(new_height, new_width), interpolation=TF.InterpolationMode.BICUBIC, antialias=True)

    image_tensor = TF.normalize(image_tensor, mean=mean, std=std)
    return image_tensor.unsqueeze(0)  # Add batch dimension


def _sliding_window_predict(
    model: nn.Module,
    image: Tensor,
    window_size: int,
    stride: int, 
    max_num_windows: int = 256
):
    assert len(image.shape) == 4, f"Image must be a 4D tensor (1, c, h, w), got {image.shape}"
    window_size = (int(window_size), int(window_size)) if isinstance(window_size, (int, float)) else window_size
    stride = (int(stride), int(stride)) if isinstance(stride, (int, float)) else stride
    window_size = tuple(window_size)
    stride = tuple(stride)
    assert isinstance(window_size, tuple) and len(window_size) == 2 and window_size[0] > 0 and window_size[1] > 0, f"Window size must be a positive integer tuple (h, w), got {window_size}"
    assert isinstance(stride, tuple) and len(stride) == 2 and stride[0] > 0 and stride[1] > 0, f"Stride must be a positive integer tuple (h, w), got {stride}"
    assert stride[0] <= window_size[0] and stride[1] <= window_size[1], f"Stride must be smaller than window size, got {stride} and {window_size}"

    image_height, image_width = image.shape[-2:]
    window_height, window_width = window_size
    assert image_height >= window_height and image_width >= window_width, f"Image size must be larger than window size, got image size {image.shape} and window size {window_size}"
    stride_height, stride_width = stride

    num_rows = int(np.ceil((image_height - window_height) / stride_height) + 1)
    num_cols = int(np.ceil((image_width - window_width) / stride_width) + 1)

    if hasattr(model, "block_size"):
        block_size = model.block_size
    elif hasattr(model, "module") and hasattr(model.module, "block_size"):
        block_size = model.module.block_size
    else:
        raise ValueError("Model must have block_size attribute")
    assert window_height % block_size == 0 and window_width % block_size == 0, f"Window size must be divisible by block size, got {window_size} and {block_size}"

    windows = []
    for i in range(num_rows):
        for j in range(num_cols):
            x_start, y_start = i * stride_height, j * stride_width
            x_end, y_end = x_start + window_height, y_start + window_width
            if x_end > image_height:
                x_start, x_end = image_height - window_height, image_height
            if y_end > image_width:
                y_start, y_end = image_width - window_width, image_width

            window = image[:, :, x_start:x_end, y_start:y_end]
            windows.append(window)

    windows = torch.cat(windows, dim=0).to(image.device)  # batched windows, shape: (num_windows, c, h, w)
    
    model.eval()
    pi_maps, lambda_maps = [], []
    for i in range(0, len(windows), max_num_windows):
        with torch.no_grad(), autocast(device_type="cuda" if torch.cuda.is_available() else "cpu"):
            image_feats = model.backbone(windows[i: min(i + max_num_windows, len(windows))])
            pi_image_feats, lambda_image_feats = model.pi_head(image_feats), model.lambda_head(image_feats)
            pi_image_feats = F.normalize(pi_image_feats.permute(0, 2, 3, 1), p=2, dim=-1)  # shape (B, H, W, C)
            lambda_image_feats = F.normalize(lambda_image_feats.permute(0, 2, 3, 1), p=2, dim=-1)  # shape (B, H, W, C)

            pi_text_feats, lambda_text_feats = model.pi_text_feats, model.lambda_text_feats
            pi_logit_scale, lambda_logit_scale = model.pi_logit_scale.exp(), model.lambda_logit_scale.exp()

            pi_logit_map = pi_logit_scale * pi_image_feats @ pi_text_feats.t()  # (B, H, W, 2), logits per image
            lambda_logit_map = lambda_logit_scale * lambda_image_feats @ lambda_text_feats.t()  # (B, H, W, N - 1), logits per image

            pi_logit_map =  pi_logit_map.permute(0, 3, 1, 2)  # (B, 2, H, W)
            lambda_logit_map = lambda_logit_map.permute(0, 3, 1, 2)  # (B, N - 1, H, W)

            lambda_map = (lambda_logit_map.softmax(dim=1) * model.bin_centers[:, 1:]).sum(dim=1, keepdim=True)  # (B, 1, H, W)
            pi_map = pi_logit_map.softmax(dim=1)[:, 0:1]  # (B, 1, H, W)

            pi_maps.append(pi_map.cpu().numpy())
            lambda_maps.append(lambda_map.cpu().numpy())

    # assemble the density map
    pi_maps = np.concatenate(pi_maps, axis=0)  # shape: (num_windows, 1, H, W)
    lambda_maps = np.concatenate(lambda_maps, axis=0)  # shape: (num_windows, 1, H, W)
    assert pi_maps.shape == lambda_maps.shape, f"pi_maps and lambda_maps must have the same shape, got {pi_maps.shape} and {lambda_maps.shape}"

    pi_map = np.zeros((pi_maps.shape[1], image_height // block_size, image_width // block_size), dtype=np.float32)
    lambda_map = np.zeros((lambda_maps.shape[1], image_height // block_size, image_width // block_size), dtype=np.float32)
    count_map = np.zeros((pi_maps.shape[1], image_height // block_size, image_width // block_size), dtype=np.float32)
    idx = 0
    for i in range(num_rows):
        for j in range(num_cols):
            x_start, y_start = i * stride_height, j * stride_width
            x_end, y_end = x_start + window_height, y_start + window_width
            if x_end > image_height:
                x_start, x_end = image_height - window_height, image_height
            if y_end > image_width:
                y_start, y_end = image_width - window_width, image_width

            pi_map[:, (x_start // block_size): (x_end // block_size), (y_start // block_size): (y_end // block_size)] += pi_maps[idx, :, :, :]
            lambda_map[:, (x_start // block_size): (x_end // block_size), (y_start // block_size): (y_end // block_size)] += lambda_maps[idx, :, :, :]
            count_map[:, (x_start // block_size): (x_end // block_size), (y_start // block_size): (y_end // block_size)] += 1.
            idx += 1

    # average the density map
    pi_map /= count_map
    lambda_map /= count_map
    
    # convert to Tensor and reshape
    pi_map = torch.from_numpy(pi_map).unsqueeze(0)  # shape: (1, 1, H // block_size, W // block_size)
    lambda_map = torch.from_numpy(lambda_map).unsqueeze(0)  # shape: (1, 1, H // block_size, W // block_size)
    return pi_map, lambda_map


# -----------------------------
# Inference function
# -----------------------------
@spaces.GPU(duration=120)
def predict(image: Image.Image, variant_dataset_metric: str):
    """
    Given an input image, preprocess it, run the model to obtain a density map,
    compute the total crowd count, and prepare the density map for display.
    """
    global loaded_model, current_model_config
    
    # 在GPU进程中定义device
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    
    # 如果选择的是分割线,返回错误信息
    if "━━━━━━" in variant_dataset_metric:
        return image, None, None, "⚠️ Please select a valid model configuration", None, None, None
    
    parts = variant_dataset_metric.split(" @ ")
    if len(parts) != 3:
        return image, None, None, "❌ Invalid model configuration format", None, None, None
        
    variant, dataset, metric = parts[0], parts[1], parts[2].lower()

    if dataset == "ShanghaiTech A":
        dataset_name = "sha"
    elif dataset == "ShanghaiTech B":
        dataset_name = "shb"
    elif dataset == "UCF-QNRF":
        dataset_name = "qnrf"
    elif dataset == "NWPU-Crowd":
        dataset_name = "nwpu"
    else:
        return image, None, None, f"❌ Unknown dataset: {dataset}", None, None, None

    # 在GPU进程中加载模型(如果需要)
    if (loaded_model is None or 
        current_model_config["variant"] != variant or 
        current_model_config["dataset"] != dataset_name or 
        current_model_config["metric"] != metric):
        
        print(f"Loading model in GPU process: {variant} @ {dataset} with {metric} metric")
        loaded_model = load_model(variant=variant, dataset=dataset_name, metric=metric)
        current_model_config = {"variant": variant, "dataset": dataset_name, "metric": metric}

    if not hasattr(loaded_model, "input_size"):
        if dataset_name == "sha":
            loaded_model.input_size = 224
        elif dataset_name == "shb":
            loaded_model.input_size = 448
        elif dataset_name == "qnrf":
            loaded_model.input_size = 672
        elif dataset_name == "nwpu":
            loaded_model.input_size = 672
    elif isinstance(loaded_model.input_size, (list, tuple)):
        loaded_model.input_size = loaded_model.input_size[0]  # Use the first element if it's a list or tuple
    else:
        assert isinstance(loaded_model.input_size, (int, float)), f"input_size must be an int or float, got {type(loaded_model.input_size)}"

    loaded_model.to(device)

    # Preprocess the image
    input_width, input_height = image.size
    image_tensor = transform(image, dataset_name).to(device)  # shape: (1, 3, H, W)

    input_size = loaded_model.input_size
    image_height, image_width = image_tensor.shape[-2:]
    aspect_ratio = image_width / image_height
    if image_height < input_size:
        new_height = input_size
        new_width = int(new_height * aspect_ratio)
        image_tensor = F.interpolate(image_tensor, size=(new_height, new_width), mode="bicubic", align_corners=False, antialias=True)
        image_height, image_width = new_height, new_width
    if image_width < input_size:
        new_width = input_size
        new_height = int(new_width / aspect_ratio)
        image_tensor = F.interpolate(image_tensor, size=(new_height, new_width), mode="bicubic", align_corners=False, antialias=True)
        image_height, image_width = new_height, new_width
    
    with torch.no_grad():
        if hasattr(loaded_model, "num_vpt") and loaded_model.num_vpt is not None and loaded_model.num_vpt > 0:  # For ViT models, use sliding window prediction
            # For ViT models with VPT
            pi_map, lambda_map = _sliding_window_predict(
                model=loaded_model,
                image=image_tensor,
                window_size=input_size,
                stride=input_size
            )
        
        elif hasattr(loaded_model, "pi_text_feats") and hasattr(loaded_model, "lambda_text_feats") and loaded_model.pi_text_feats is not None and loaded_model.lambda_text_feats is not None:  # For other CLIP-based models
            image_feats = loaded_model.backbone(image_tensor)
            # image_feats = F.normalize(image_feats.permute(0, 2, 3, 1), p=2, dim=-1)  # shape (B, H, W, C)
            pi_image_feats, lambda_image_feats = loaded_model.pi_head(image_feats), loaded_model.lambda_head(image_feats)
            pi_image_feats = F.normalize(pi_image_feats.permute(0, 2, 3, 1), p=2, dim=-1)  # shape (B, H, W, C)
            lambda_image_feats = F.normalize(lambda_image_feats.permute(0, 2, 3, 1), p=2, dim=-1)  # shape (B, H, W, C)

            pi_text_feats, lambda_text_feats = loaded_model.pi_text_feats, loaded_model.lambda_text_feats
            pi_logit_scale, lambda_logit_scale = loaded_model.pi_logit_scale.exp(), loaded_model.lambda_logit_scale.exp()

            pi_logit_map = pi_logit_scale * pi_image_feats @ pi_text_feats.t()  # (B, H, W, 2), logits per image
            lambda_logit_map = lambda_logit_scale * lambda_image_feats @ lambda_text_feats.t()  # (B, H, W, N - 1), logits per image

            pi_logit_map =  pi_logit_map.permute(0, 3, 1, 2)  # (B, 2, H, W)
            lambda_logit_map = lambda_logit_map.permute(0, 3, 1, 2)  # (B, N - 1, H, W)

            lambda_map = (lambda_logit_map.softmax(dim=1) * loaded_model.bin_centers[:, 1:]).sum(dim=1, keepdim=True)  # (B, 1, H, W)
            pi_map = pi_logit_map.softmax(dim=1)[:, 0:1]  # (B, 1, H, W)
        
        else: # For non-CLIP models
            x = loaded_model.backbone(image_tensor)
            logit_pi_map = loaded_model.pi_head(x)  # shape: (B, 2, H, W)
            logit_map = loaded_model.bin_head(x)  # shape: (B, C, H, W)
            lambda_map= (logit_map.softmax(dim=1) * loaded_model.bin_centers[:, 1:]).sum(dim=1, keepdim=True)  # shape: (B, 1, H, W)
            pi_map = logit_pi_map.softmax(dim=1)[:, 0:1]  # shape: (B, 1, H, W)

        
        den_map = (1.0 - pi_map) * lambda_map  # shape: (B, 1, H, W)
        count = den_map.sum().item()

        strucrual_zero_map = F.interpolate(
            pi_map, size=(input_height, input_width), mode="bilinear", align_corners=False, antialias=True
        ).cpu().squeeze().numpy()

        lambda_map = F.interpolate(
            lambda_map, size=(input_height, input_width), mode="bilinear", align_corners=False, antialias=True
        ).cpu().squeeze().numpy()

        den_map = F.interpolate(
            den_map, size=(input_height, input_width), mode="bilinear", align_corners=False, antialias=True
        ).cpu().squeeze().numpy()
    
    sampling_zero_map = (1.0 - strucrual_zero_map) * np.exp(-lambda_map)
    complete_zero_map = strucrual_zero_map + sampling_zero_map

    # Normalize maps for display purposes
    def normalize_map(x: np.ndarray) -> np.ndarray:
        """ Normalize the map to [0, 1] range for visualization. """
        x_min = np.min(x)
        x_max = np.max(x)
        if x_max - x_min < EPS:
            return np.zeros_like(x)
        return (x - x_min) / (x_max - x_min + EPS)
    
    # strucrual_zero_map = normalize_map(strucrual_zero_map)
    # sampling_zero_map = normalize_map(sampling_zero_map)
    lambda_map = normalize_map(lambda_map)
    # den_map = normalize_map(den_map)
    # complete_zero_map = normalize_map(complete_zero_map)
    
    # Apply a colormap for better visualization
    # Options: 'viridis', 'plasma', 'hot', 'inferno', 'jet' (recommended)
    colormap = cm.get_cmap("jet")

    # The colormap returns values in [0,1]. Scale to [0,255] and convert to uint8.
    den_map = (colormap(den_map) * 255).astype(np.uint8)
    strucrual_zero_map = (colormap(strucrual_zero_map) * 255).astype(np.uint8)
    sampling_zero_map = (colormap(sampling_zero_map) * 255).astype(np.uint8)
    lambda_map = (colormap(lambda_map) * 255).astype(np.uint8)
    complete_zero_map = (colormap(complete_zero_map) * 255).astype(np.uint8)

    # Convert to PIL images
    den_map = Image.fromarray(den_map).convert("RGBA")
    strucrual_zero_map = Image.fromarray(strucrual_zero_map).convert("RGBA")
    sampling_zero_map = Image.fromarray(sampling_zero_map).convert("RGBA")
    lambda_map = Image.fromarray(lambda_map).convert("RGBA")
    complete_zero_map = Image.fromarray(complete_zero_map).convert("RGBA")
    
    # Ensure the original image is in RGBA format.
    image_rgba = image.convert("RGBA")

    den_map = Image.blend(image_rgba, den_map, alpha=alpha)
    strucrual_zero_map = Image.blend(image_rgba, strucrual_zero_map, alpha=alpha)
    sampling_zero_map = Image.blend(image_rgba, sampling_zero_map, alpha=alpha)
    lambda_map = Image.blend(image_rgba, lambda_map, alpha=alpha)
    complete_zero_map = Image.blend(image_rgba, complete_zero_map, alpha=alpha)
    
    # 格式化计数显示
    count_display = f"👥 {round(count, 2)} people detected"
    if count < 1:
        count_display = "👤 Less than 1 person detected"
    elif count == 1:
        count_display = "👤 1 person detected"
    elif count < 10:
        count_display = f"👥 {round(count, 1)} people detected"
    else:
        count_display = f"👥 {round(count)} people detected"
    
    return image, den_map, lambda_map, count_display, strucrual_zero_map, sampling_zero_map, complete_zero_map


# -----------------------------
# Build Gradio Interface using Blocks for a two-column layout
# -----------------------------
css = """
/* 导入科技感字体 */
@import url('https://fonts.googleapis.com/css2?family=Inter:wght@300;400;500;600;700;800&family=JetBrains+Mono:wght@400;500;600;700&family=Fira+Code:wght@300;400;500;600&display=swap');

/* 基础样式 - 保持功能性 */
.gradio-container {
    max-width: 1600px;
    margin: 0 auto;
    padding: 20px;
    font-family: 'Inter', -apple-system, BlinkMacSystemFont, 'Segoe UI', system-ui, sans-serif;
}

/* 标题使用科技感字体 */
.gr-markdown h1 {
    font-family: 'JetBrains Mono', 'Fira Code', monospace;
    font-weight: 700;
    text-align: center;
    background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
    -webkit-background-clip: text;
    -webkit-text-fill-color: transparent;
    letter-spacing: -0.02em;
}

.gr-markdown h2, .gr-markdown h3 {
    font-family: 'Inter', sans-serif;
    font-weight: 600;
    letter-spacing: -0.01em;
}

/* 代码和技术文本使用等宽字体 */
.gr-textbox[label*="Status"], 
.gr-textbox[label*="Count"],
code, pre {
    font-family: 'JetBrains Mono', 'Fira Code', 'Roboto Mono', monospace;
}

/* 按钮使用现代字体 */
.gr-button {
    font-family: 'Inter', sans-serif;
    font-weight: 600;
    letter-spacing: 0.01em;
}

/* 简单的分割线样式 */
option[value*="━━━━━━"] {
    color: #999;
    background-color: #f0f0f0;
    text-align: center;
}

/* 下拉框滑动条样式 */
.gr-dropdown select {
    max-height: 200px;
    overflow-y: auto;
}

/* 下拉框选项容器样式 */
.gr-dropdown .choices__list {
    max-height: 200px;
    overflow-y: auto;
}

.gr-dropdown .choices__list--dropdown {
    max-height: 200px;
    overflow-y: auto;
    border: 1px solid #e5e7eb;
    border-radius: 6px;
    box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
}

/* 确保下拉框容器不被裁剪 */
.gr-dropdown {
    position: relative;
    z-index: 1000;
}

/* 自定义滚动条样式 - WebKit浏览器 */
.gr-dropdown select::-webkit-scrollbar,
.gr-dropdown .choices__list::-webkit-scrollbar {
    width: 8px;
}

.gr-dropdown select::-webkit-scrollbar-track,
.gr-dropdown .choices__list::-webkit-scrollbar-track {
    background: #f1f1f1;
    border-radius: 4px;
}

.gr-dropdown select::-webkit-scrollbar-thumb,
.gr-dropdown .choices__list::-webkit-scrollbar-thumb {
    background: #c1c1c1;
    border-radius: 4px;
}

.gr-dropdown select::-webkit-scrollbar-thumb:hover,
.gr-dropdown .choices__list::-webkit-scrollbar-thumb:hover {
    background: #a1a1a1;
}

/* Firefox滚动条样式 */
.gr-dropdown select,
.gr-dropdown .choices__list {
    scrollbar-width: thin;
    scrollbar-color: #c1c1c1 #f1f1f1;
}

/* 基础组件样式 */
.gr-group {
    background: white;
    border-radius: 8px;
    padding: 16px;
    margin: 8px 0;
    box-shadow: 0 2px 4px rgba(0,0,0,0.1);
}

.gr-button {
    background: #3b82f6;
    color: white;
    border: none;
    border-radius: 6px;
    padding: 12px 24px;
    font-weight: 600;
}

.gr-image {
    border-radius: 8px;
    height: 400px;
}

/* 响应式设计 */
@media (max-width: 768px) {
    .gradio-container {
        padding: 12px;
    }
    
    .gr-image {
        height: 300px;
    }
}
"""

with gr.Blocks(css=css, theme=gr.themes.Soft(), title="ZIP Crowd Counting") as demo:
    gr.Markdown("""
    # 🎯 Crowd Counting by ZIP
    ### Upload an image and get precise crowd density predictions with ZIP models!
    """)
    
    # 添加信息面板
    with gr.Accordion("ℹ️ About ZIP", open=True):
        gr.Markdown("""
        **ZIP (Zero-Inflated Poisson)** is a framework designed for crowd counting, a task where the goal is to estimate how many people are present in an image. It was introduced in the paper [ZIP: Scalable Crowd Counting via Zero-Inflated Poisson Modeling](https://arxiv.org/abs/2506.19955).
        ZIP is based on a simple idea: not all empty areas in an image mean the same thing. Some regions are empty because there are truly no people there (like walls or sky), while others are places where people could appear but just happen not to in this particular image. ZIP separates these two cases using two prediction heads:
        - **Structural Zeros**: These are regions that naturally never contain people (e.g., the background or torso areas). These are handled by the π head.
        - **Sampling Zeros**: These are regions where people could appear but don't in this image. These are modeled by the λ head.
        
        By separating *where* people are likely to be from *how many* are present, ZIP produces more accurate and interpretable crowd estimates, especially in scenes with large empty spaces or varied crowd densities.
        
        Choose from different model variants: **ZIP-B** (Base), **ZIP-S** (Small), **ZIP-T** (Tiny), **ZIP-N** (Nano), **ZIP-P** (Pico)
        """)

    # 第二行:模型配置、状态和预测结果(三列等宽)
    with gr.Row():
        with gr.Column(scale=1):
            with gr.Group():
                model_dropdown = gr.Dropdown(
                    choices=pretrained_models,
                    value="ZIP-B @ NWPU-Crowd @ MAE",
                    label="🎛️ Select Model & Dataset",
                    info="Choose model variant, dataset, and evaluation metric",
                    allow_custom_value=False,
                    filterable=True,
                    max_choices=None
                )
        
        with gr.Column(scale=1):
            with gr.Group():
                model_status = gr.Textbox(
                    label="📊 Model Status",
                    value="🔄 No model loaded",
                    interactive=False,
                    elem_classes=["status-display"],
                    lines=2
                )
        
        with gr.Column(scale=1):
            with gr.Group():
                output_text = gr.Textbox(
                    label="🧙 Predicted Count",
                    value="",
                    interactive=False,
                    info="Total number of people detected",
                    lines=1
                )

    # 第三行:主要图像(输入图像、密度图、Lambda图)
    with gr.Row():
        with gr.Column(scale=1):
            with gr.Group():
                input_img = gr.Image(
                    label="📸 Upload Image", 
                    sources=["upload", "clipboard"], 
                    type="pil",
                    height=360
                )
                submit_btn = gr.Button(
                    "🚀 Analyze Crowd", 
                    variant="primary",
                    size="lg"
                )
        
        with gr.Column(scale=1):
            with gr.Group():
                output_den_map = gr.Image(
                    label="🎯 Predicted Density Map", 
                    type="pil", 
                    height=400
                )
        
        with gr.Column(scale=1):
            with gr.Group():
                output_lambda_map = gr.Image(
                    label="📈 Lambda Map", 
                    type="pil", 
                    height=400
                )
    
    # 第四行:Zero Analysis - 全宽,内部三列等宽
    with gr.Group():
        gr.Markdown("### 🔍 Zero Analysis")
        gr.Markdown("*Explore different types of zero predictions in crowd analysis*")
        with gr.Row():
            with gr.Column(scale=1):
                output_structural_zero_map = gr.Image(
                    label="🏗️ Structural Zero Map", 
                    type="pil", 
                    height=400,
                    elem_classes=["zero-analysis-image"]
                )
            
            with gr.Column(scale=1):
                output_sampling_zero_map = gr.Image(
                    label="📊 Sampling Zero Map", 
                    type="pil", 
                    height=400,
                    elem_classes=["zero-analysis-image"]
                )
            
            with gr.Column(scale=1):
                output_complete_zero_map = gr.Image(
                    label="👺 Complete Zero Map", 
                    type="pil", 
                    height=400,
                    elem_classes=["zero-analysis-image"]
                )

    # 当模型变化时,自动更新模型
    def on_model_change(variant_dataset_metric):
        # 如果选择的是分割线,保持当前选择不变
        if "━━━━━━" in variant_dataset_metric:
            return "⚠️ Please select a valid model configuration"
        result = update_model_if_needed(variant_dataset_metric)
        if "Model configuration set:" in result:
            return f"✅ {result}"
        elif "Model configuration:" in result:
            return f"🔄 {result}"
        else:
            return f"❌ {result}"
    
    model_dropdown.change(
        fn=on_model_change,
        inputs=[model_dropdown],
        outputs=[model_status]
    )

    # 页面加载时设置默认模型配置(不在主进程中加载模型)
    demo.load(
        fn=lambda: f"✅ {update_model_if_needed('ZIP-B @ NWPU-Crowd @ MAE')}",
        outputs=[model_status]
    )

    submit_btn.click(
        fn=predict,
        inputs=[input_img, model_dropdown],
        outputs=[input_img, output_den_map, output_lambda_map, output_text, output_structural_zero_map, output_sampling_zero_map, output_complete_zero_map]
    )

    # 美化示例区域
    with gr.Accordion("🖼️ Try Example Images", open=True):
        gr.Markdown("**Click on any example below to test the model:**")
        gr.Examples(
            examples=[
                ["example1.jpg"], ["example2.jpg"], ["example3.jpg"], ["example4.jpg"],
                ["example5.jpg"], ["example6.jpg"], ["example7.jpg"], ["example8.jpg"],
                ["example9.jpg"], ["example10.jpg"], ["example11.jpg"], ["example12.jpg"]
            ],
            inputs=input_img,
            label="📚 Example Gallery",
            examples_per_page=12
        )
    
    # 添加使用说明
    with gr.Accordion("📖 How to Use", open=True):
        gr.Markdown("""
        ### Step-by-step Guide:
        
        1. **🎛️ Select Model**: Choose your preferred model variant, pre-training dataset, and pre-training evaluation metric from the dropdown
        2. **📸 Upload Image**: Click the image area to upload your crowd photo or use clipboard
        3. **🚀 Analyze**: Click the "Analyze Crowd" button to start processing
        4. **📊 View Results**: Examine the density maps and crowd count in the output panels
        
        ### Understanding the Outputs:
        
        **📊 Main Results:**
        - **🎯 Density Map**: Shows where people are located with color intensity, modeled by (1-π) * λ
        - **🧙 Predicted Count**: Total number of people detected in the image
        
        **🔍 Zero Analysis:**
        - **🏗️ Structural Zero Map**: Indicates regions that structurally cannot contain head annotations (e.g., walls, sky, torso, or background). These are governed by the π head, which estimates the probability that a region never contains people.
        - **📊 Sampling Zero Map**: Shows areas where people could be present but happen not to appear in the current image. These zeros are modeled by (1-π) * exp(-λ), where the expected count λ is near zero.
        - **👺 Complete Zero Map**: A combined visualization of zero probabilities, capturing both structural and sampling zeros. This map reflects overall non-crowd likelihood per region.
        
        **🔥 Hotspots:**
        - **📈 Lambda Map**: Highlights areas with high expected crowd density. Each value represents the expected number of people in that region, modeled by the Poisson intensity (λ). This map focuses on *how many* people are likely to be present, **WITHOUT** assuming people could appear there. ⚠️ Lambda Map **NEEDS** to be combined with Structural Zero Map by (1-π) * λ to produce the final density map.
        """)
    
    # 添加技术信息
    with gr.Accordion("🔬 Technical Details", open=True):
        gr.Markdown("""
        ### Model Variants:
        - **ZIP-B**: Base model with best performance
        - **ZIP-S**: Small model for faster inference
        - **ZIP-T**: Tiny model for resource-constrained environments
        - **ZIP-N**: Nano model for mobile applications
        - **ZIP-P**: Pico model for edge devices
        
        ### Pre-trainining Datasets:
        - **ShanghaiTech A**: Dense, low-resolution crowd scenes
        - **ShanghaiTech B**: Sparse, high-resolution crowd scenes
        - **UCF-QNRF**: Dense, ultra high-resolution crowd images
        - **NWPU-Crowd**: Largest ultra high-resolution crowd counting dataset
        
        ### Pre-trainining Evaluation Metrics:
        - **MAE**: Mean Absolute Error - average counting error.
        - **NAE**: Normalized Absolute Error - relative counting error
        """)

demo.launch(
    server_name="0.0.0.0",
    server_port=7860,
    show_api=False,
    share=False
)