Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
from torch import nn, Tensor | |
import torch.nn.functional as F | |
from einops import rearrange | |
from einops.layers.torch import Rearrange | |
from typing import Callable, Optional, Sequence, Tuple, Union, List, List | |
import warnings | |
from .utils import _init_weights, _make_ntuple, _log_api_usage_once | |
def conv3x3( | |
in_channels: int, | |
out_channels: int, | |
stride: int = 1, | |
groups: int = 1, | |
dilation: int = 1, | |
bias: bool = True, | |
) -> nn.Conv2d: | |
"""3x3 convolution with padding""" | |
conv = nn.Conv2d( | |
in_channels, | |
out_channels, | |
kernel_size=3, | |
stride=stride, | |
padding=dilation, | |
groups=groups, | |
bias=bias, | |
dilation=dilation, | |
) | |
conv.apply(_init_weights) | |
return conv | |
def conv1x1( | |
in_channels: int, | |
out_channels: int, | |
stride: int = 1, | |
bias: bool = True, | |
) -> nn.Conv2d: | |
"""1x1 convolution""" | |
conv = nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=stride, bias=bias) | |
conv.apply(_init_weights) | |
return conv | |
class DepthSeparableConv2d(nn.Module): | |
def __init__( | |
self, | |
in_channels: int, | |
out_channels: int, | |
kernel_size: int, | |
stride: int = 1, | |
padding: int = 0, | |
dilation: int = 1, | |
bias: bool = True, | |
padding_mode: str = "zeros", | |
) -> None: | |
super().__init__() | |
# Depthwise convolution: one filter per input channel. | |
self.depthwise = nn.Conv2d( | |
in_channels=in_channels, | |
out_channels=in_channels, | |
kernel_size=kernel_size, | |
stride=stride, | |
padding=padding, | |
dilation=dilation, | |
groups=in_channels, | |
bias=bias, | |
padding_mode=padding_mode | |
) | |
# Pointwise convolution: combine the features across channels. | |
self.pointwise = nn.Conv2d( | |
in_channels=in_channels, | |
out_channels=out_channels, | |
kernel_size=1, | |
stride=1, | |
padding=0, | |
dilation=1, | |
groups=1, | |
bias=bias, | |
padding_mode=padding_mode | |
) | |
self.apply(_init_weights) | |
def forward(self, x: Tensor) -> Tensor: | |
return self.pointwise(self.depthwise(x)) | |
class SEBlock(nn.Module): | |
def __init__(self, channels: int, reduction: int = 16): | |
super().__init__() | |
self.avg_pool = nn.AdaptiveAvgPool2d(1) | |
self.fc = nn.Sequential( | |
nn.Linear(channels, channels // reduction, bias=False), | |
nn.ReLU(inplace=True), | |
nn.Linear(channels // reduction, channels, bias=False), | |
nn.Sigmoid() | |
) | |
self.apply(_init_weights) | |
def forward(self, x: Tensor) -> Tensor: | |
B, C, _, _ = x.shape | |
y = self.avg_pool(x).view(B, C) | |
y = self.fc(y).view(B, C, 1, 1) | |
return x * y | |
class BasicBlock(nn.Module): | |
def __init__( | |
self, | |
in_channels: int, | |
out_channels: int, | |
norm_layer: Union[nn.BatchNorm2d, nn.GroupNorm, None] = nn.BatchNorm2d, | |
activation: nn.Module = nn.ReLU(inplace=True), | |
groups: int = 1, | |
) -> None: | |
super().__init__() | |
assert isinstance(groups, int) and groups > 0, f"Expected groups to be a positive integer, but got {groups}" | |
assert in_channels % groups == 0, f"Expected in_channels to be divisible by groups, but got {in_channels} % {groups}" | |
assert out_channels % groups == 0, f"Expected out_channels to be divisible by groups, but got {out_channels} % {groups}" | |
self.grouped_conv = groups > 1 | |
self.conv1 = conv3x3( | |
in_channels=in_channels, | |
out_channels=out_channels, | |
stride=1, | |
bias=not norm_layer, | |
groups=groups, | |
) | |
if self.grouped_conv: | |
self.conv1_1x1 = conv1x1(out_channels, out_channels, stride=1, bias=not norm_layer) | |
self.norm1 = norm_layer(out_channels) if norm_layer else nn.Identity() | |
self.act1 = activation | |
self.conv2 = conv3x3( | |
in_channels=out_channels, | |
out_channels=out_channels, | |
stride=1, | |
bias=not norm_layer, | |
groups=groups, | |
) | |
if self.grouped_conv: | |
self.conv2_1x1 = conv1x1(out_channels, out_channels, stride=1, bias=not norm_layer) | |
self.norm2 = norm_layer(out_channels) if norm_layer else nn.Identity() | |
self.act2 = activation | |
if in_channels != out_channels: | |
self.downsample = nn.Sequential( | |
conv1x1(in_channels, out_channels, stride=1, bias=not norm_layer), | |
norm_layer(out_channels) if norm_layer else nn.Identity(), | |
) | |
else: | |
self.downsample = nn.Identity() | |
self.apply(_init_weights) | |
def forward(self, x: Tensor) -> Tensor: | |
identity = x | |
out = self.conv1(x) | |
out = self.conv1_1x1(out) if self.grouped_conv else out | |
out = self.norm1(out) | |
out = self.act1(out) | |
out = self.conv2(out) | |
out = self.conv2_1x1(out) if self.grouped_conv else out | |
out = self.norm2(out) | |
out += self.downsample(identity) | |
out = self.act2(out) | |
return out | |
class LightBasicBlock(nn.Module): | |
def __init__( | |
self, | |
in_channels: int, | |
out_channels: int, | |
norm_layer: Union[nn.BatchNorm2d, nn.GroupNorm, None] = nn.BatchNorm2d, | |
activation: nn.Module = nn.ReLU(inplace=True), | |
) -> None: | |
super().__init__() | |
self.conv1 = DepthSeparableConv2d( | |
in_channels=in_channels, | |
out_channels=out_channels, | |
kernel_size=3, | |
stride=1, | |
padding=1, | |
bias=not norm_layer, | |
) | |
self.norm1 = norm_layer(out_channels) if norm_layer else nn.Identity() | |
self.act1 = activation | |
self.conv2 = DepthSeparableConv2d( | |
in_channels=out_channels, | |
out_channels=out_channels, | |
kernel_size=3, | |
stride=1, | |
padding=1, | |
bias=not norm_layer, | |
) | |
self.norm2 = norm_layer(out_channels) if norm_layer else nn.Identity() | |
self.act2 = activation | |
if in_channels != out_channels: | |
self.downsample = nn.Sequential( | |
conv1x1(in_channels, out_channels, stride=1, bias=not norm_layer), | |
norm_layer(out_channels) if norm_layer else nn.Identity(), | |
) | |
else: | |
self.downsample = nn.Identity() | |
self.apply(_init_weights) | |
def forward(self, x: Tensor) -> Tensor: | |
identity = x | |
out = self.conv1(x) | |
out = self.norm1(out) | |
out = self.act1(out) | |
out = self.conv2(out) | |
out = self.norm2(out) | |
out += self.downsample(identity) | |
out = self.act2(out) | |
return out | |
class Bottleneck(nn.Module): | |
def __init__( | |
self, | |
in_channels: int, | |
out_channels: int, | |
norm_layer: Union[nn.BatchNorm2d, nn.GroupNorm, None] = nn.BatchNorm2d, | |
activation: nn.Module = nn.ReLU(inplace=True), | |
groups: int = 1, | |
base_width: int = 64, | |
expansion: float = 2.0, | |
) -> None: | |
super().__init__() | |
assert isinstance(groups, int) and groups > 0, f"Expected groups to be a positive integer, but got {groups}" | |
assert expansion > 0, f"Expected expansion to be greater than 0, but got {expansion}" | |
assert base_width > 0, f"Expected base_width to be greater than 0, but got {base_width}" | |
bottleneck_channels = int(in_channels * (base_width / 64.0) * expansion) | |
assert bottleneck_channels % groups == 0, f"Expected bottleneck_channels to be divisible by groups, but got {bottleneck_channels} % {groups}" | |
self.grouped_conv = groups > 1 | |
self.expansion, self.base_width = expansion, base_width | |
self.conv_in = conv1x1(in_channels, bottleneck_channels, stride=1, bias=not norm_layer) | |
self.norm_in = norm_layer(bottleneck_channels) | |
self.act_in = activation | |
self.se_in = SEBlock(bottleneck_channels) if bottleneck_channels > in_channels else nn.Identity() | |
self.conv_block_1 = nn.Sequential( | |
conv3x3( | |
in_channels=bottleneck_channels, | |
out_channels=bottleneck_channels, | |
stride=1, | |
groups=groups, | |
bias=not norm_layer | |
), | |
conv1x1(bottleneck_channels, bottleneck_channels, stride=1, bias=not norm_layer) if groups > 1 else nn.Identity(), | |
norm_layer(bottleneck_channels) if norm_layer else nn.Identity(), | |
activation, | |
) | |
self.conv_block_2 = nn.Sequential( | |
conv3x3( | |
in_channels=bottleneck_channels, | |
out_channels=bottleneck_channels, | |
stride=1, | |
groups=groups, | |
bias=not norm_layer | |
), | |
conv1x1(bottleneck_channels, bottleneck_channels, stride=1, bias=not norm_layer) if groups > 1 else nn.Identity(), | |
norm_layer(bottleneck_channels) if norm_layer else nn.Identity(), | |
activation, | |
) | |
self.conv_out = conv1x1(bottleneck_channels, out_channels, stride=1, bias=not norm_layer) | |
self.norm_out = norm_layer(out_channels) | |
self.act_out = activation | |
self.se_out = SEBlock(out_channels) if out_channels > bottleneck_channels else nn.Identity() | |
if in_channels != out_channels: | |
self.downsample = nn.Sequential( | |
conv1x1(in_channels, out_channels, stride=1, bias=not norm_layer), | |
norm_layer(out_channels) if norm_layer else nn.Identity(), | |
) | |
else: | |
self.downsample = nn.Identity() | |
self.apply(_init_weights) | |
def forward(self, x: Tensor) -> Tensor: | |
identity = x | |
# expand | |
out = self.conv_in(x) | |
out = self.norm_in(out) | |
out = self.act_in(out) | |
out = self.se_in(out) | |
# conv | |
out = self.conv_block_1(out) | |
out = self.conv_block_2(out) | |
# reduce | |
out = self.conv_out(out) | |
out = self.norm_out(out) | |
out = self.se_out(out) | |
out += self.downsample(identity) | |
out = self.act_out(out) | |
return out | |
class ConvASPP(nn.Module): | |
def __init__( | |
self, | |
in_channels: int, | |
out_channels: int, | |
dilations: List[int] = [1, 2, 4], | |
norm_layer: Union[nn.BatchNorm2d, nn.GroupNorm, None] = nn.BatchNorm2d, | |
activation: nn.Module = nn.ReLU(inplace=True), | |
groups: int = 1, | |
base_width: int = 64, | |
expansion: float = 2.0, | |
) -> None: | |
super().__init__() | |
assert isinstance(groups, int) and groups > 0, f"Expected groups to be a positive integer, but got {groups}" | |
assert expansion > 0, f"Expected expansion to be greater than 0, but got {expansion}" | |
assert base_width > 0, f"Expected base_width to be greater than 0, but got {base_width}" | |
bottleneck_channels = int(in_channels * (base_width / 64.0) * expansion) | |
assert bottleneck_channels % groups == 0, f"Expected bottleneck_channels to be divisible by groups, but got {bottleneck_channels} % {groups}" | |
self.expansion, self.base_width = expansion, base_width | |
self.conv_in = conv1x1(in_channels, bottleneck_channels, stride=1, bias=not norm_layer) | |
self.norm_in = norm_layer(bottleneck_channels) | |
self.act_in = activation | |
conv_blocks = [nn.Sequential( | |
conv1x1(bottleneck_channels, bottleneck_channels, stride=1, bias=not norm_layer), | |
norm_layer(bottleneck_channels), | |
activation | |
)] | |
for dilation in dilations: | |
conv_blocks.append(nn.Sequential( | |
conv3x3( | |
in_channels=bottleneck_channels, | |
out_channels=bottleneck_channels, | |
stride=1, | |
groups=groups, | |
dilation=dilation, | |
bias=not norm_layer | |
), | |
conv1x1(bottleneck_channels, bottleneck_channels, stride=1, bias=not norm_layer) if groups > 1 else nn.Identity(), | |
norm_layer(bottleneck_channels) if norm_layer else nn.Identity(), | |
activation | |
)) | |
self.convs = nn.ModuleList(conv_blocks) | |
self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) | |
self.conv_avg = conv1x1(bottleneck_channels, bottleneck_channels, stride=1, bias=not norm_layer) | |
self.norm_avg = norm_layer(bottleneck_channels) | |
self.act_avg = activation | |
self.se = SEBlock(bottleneck_channels * (len(dilations) + 2)) | |
self.conv_out = conv1x1(bottleneck_channels * (len(dilations) + 2), out_channels, stride=1, bias=not norm_layer) | |
self.norm_out = norm_layer(out_channels) | |
self.act_out = activation | |
if in_channels != out_channels: | |
self.downsample = nn.Sequential( | |
conv1x1(in_channels, out_channels, stride=1, bias=not norm_layer), | |
norm_layer(out_channels) if norm_layer else nn.Identity(), | |
) | |
else: | |
self.downsample = nn.Identity() | |
self.apply(_init_weights) | |
def forward(self, x: Tensor) -> Tensor: | |
height, width = x.shape[-2:] | |
identity = x | |
# expand | |
out = self.conv_in(x) | |
out = self.norm_in(out) | |
out = self.act_in(out) | |
outs = [] | |
for conv in self.convs: | |
outs.append(conv(out)) | |
avg = self.avgpool(out) | |
avg = self.conv_avg(avg) | |
avg = self.norm_avg(avg) | |
avg = self.act_avg(avg) # (B, C, 1, 1) | |
avg = avg.repeat(1, 1, height, width) | |
outs = torch.cat([*outs, avg], dim=1) # (B, C * (len(dilations) + 2), H, W) | |
outs = self.se(outs) | |
# reduce | |
outs = self.conv_out(outs) | |
outs = self.norm_out(outs) | |
outs += self.downsample(identity) | |
outs = self.act_out(outs) | |
return outs | |
class ViTBlock(nn.Module): | |
def __init__( | |
self, | |
embed_dim: int, | |
num_heads: int = 8, | |
dropout: float = 0.0, | |
mlp_ratio: float = 4.0, | |
) -> None: | |
super().__init__() | |
assert embed_dim % num_heads == 0, f"Embedding dimension {embed_dim} should be divisible by number of heads {num_heads}" | |
self.embed_dim, self.num_heads = embed_dim, num_heads | |
self.dropout, self.mlp_ratio = dropout, mlp_ratio | |
self.norm1 = nn.LayerNorm(embed_dim) | |
self.attn = nn.MultiheadAttention( | |
embed_dim=embed_dim, | |
num_heads=num_heads, | |
dropout=dropout, | |
batch_first=True | |
) | |
self.norm2 = nn.LayerNorm(embed_dim) | |
self.mlp = nn.Sequential( | |
nn.Linear(embed_dim, int(embed_dim * mlp_ratio)), | |
nn.GELU(), | |
nn.Dropout(dropout) if dropout > 0 else nn.Identity(), | |
nn.Linear(int(embed_dim * mlp_ratio), embed_dim), | |
nn.Dropout(dropout) if dropout > 0 else nn.Identity() | |
) | |
self.apply(_init_weights) | |
def forward(self, x: Tensor) -> Tensor: | |
assert len(x.shape) == 3, f"Expected input to have shape (B, N, C), but got {x.shape}" | |
x = x + self.attn(self.norm1(x)) | |
x = x + self.mlp(self.norm2(x)) | |
return x | |
class Conv2dLayerNorm(nn.Sequential): | |
""" | |
Layer normalization applied in a convolutional fashion. | |
""" | |
def __init__(self, dim: int) -> None: | |
super().__init__( | |
Rearrange("B C H W -> B H W C"), | |
nn.LayerNorm(dim), | |
Rearrange("B H W C -> B C H W") | |
) | |
self.apply(_init_weights) | |
class CvTAttention(nn.Module): | |
def __init__( | |
self, | |
embed_dim: int, | |
num_heads: int = 8, | |
dropout: float = 0.0, | |
q_stride: int = 1, # controls downsampling rate | |
kv_stride: int = 1, | |
) -> None: | |
super().__init__() | |
assert embed_dim % num_heads == 0, f"Embedding dimension {embed_dim} should be divisible by number of heads {num_heads}" | |
self.embed_dim, self.num_heads, self.dim_head = embed_dim, num_heads, embed_dim // num_heads | |
self.scale = self.dim_head ** -0.5 | |
self.q_stride, self.kv_stride = q_stride, kv_stride | |
self.attend = nn.Softmax(dim=-1) | |
self.dropout = nn.Dropout(dropout) | |
self.to_q = DepthSeparableConv2d( | |
in_channels=embed_dim, | |
out_channels=embed_dim, | |
kernel_size=3, | |
stride=q_stride, | |
padding=1, | |
bias=False | |
) | |
self.to_k = DepthSeparableConv2d( | |
in_channels=embed_dim, | |
out_channels=embed_dim, | |
kernel_size=3, | |
stride=kv_stride, | |
padding=1, | |
bias=False | |
) | |
self.to_v = DepthSeparableConv2d( | |
in_channels=embed_dim, | |
out_channels=embed_dim, | |
kernel_size=3, | |
stride=kv_stride, | |
padding=1, | |
bias=False | |
) | |
self.to_out = nn.Sequential( | |
conv1x1(embed_dim, embed_dim, stride=1), | |
nn.Dropout(dropout) if dropout > 0 else nn.Identity() | |
) | |
self.apply(_init_weights) | |
def forward(self, x: Tensor) -> Tensor: | |
assert len(x.shape) == 4, f"Expected input to have shape (B, C, H, W), but got {x.shape}" | |
assert x.shape[1] == self.embed_dim, f"Expected input to have embedding dimension {self.embed_dim}, but got {x.shape[1]}" | |
q, k, v = self.to_q(x), self.to_k(x), self.to_v(x) | |
B, _, H, W = q.shape | |
q, k, v = map(lambda t: rearrange(t, "B (num_heads head_dim) H W -> (B num_heads) (H W) head_dim", num_heads=self.num_heads), (q, k, v)) | |
attn = (q @ k.transpose(-2, -1)) * self.scale | |
attn = self.attend(attn) | |
attn = self.dropout(attn) | |
out = attn @ v | |
out = rearrange(out, "(B num_heads) (H W) head_dim -> B (num_heads head_dim) H W", B=B, H=H, W=W, num_heads=self.num_heads) | |
out = self.to_out(out) | |
return out | |
class CvTBlock(nn.Module): | |
""" | |
Implement convolutional vision transformer block. | |
""" | |
def __init__( | |
self, | |
embed_dim: int, | |
num_heads: int = 8, | |
dropout: float = 0.0, | |
mlp_ratio: float = 4.0, | |
q_stride: int = 1, | |
kv_stride: int = 1, | |
) -> None: | |
super().__init__() | |
assert embed_dim % num_heads == 0, f"Embedding dimension {embed_dim} should be divisible by number of heads {num_heads}." | |
self.embed_dim, self.num_heads = embed_dim, num_heads | |
self.norm1 = Conv2dLayerNorm(embed_dim) | |
self.attn = CvTAttention(embed_dim, num_heads, dropout, q_stride, kv_stride) | |
self.pool = nn.AvgPool2d(kernel_size=q_stride, stride=q_stride) if q_stride > 1 else nn.Identity() | |
self.norm2 = Conv2dLayerNorm(embed_dim) | |
self.mlp = nn.Sequential( | |
nn.Conv2d(embed_dim, int(embed_dim * mlp_ratio), kernel_size=1), | |
nn.GELU(), | |
nn.Dropout(dropout) if dropout > 0 else nn.Identity(), | |
nn.Conv2d(int(embed_dim * mlp_ratio), embed_dim, kernel_size=1), | |
nn.Dropout(dropout) if dropout > 0 else nn.Identity() | |
) | |
def forward(self, x: Tensor) -> Tensor: | |
x = self.pool(x) + self.attn(self.norm1(x)) | |
x = x + self.mlp(self.norm2(x)) | |
return x | |
class ConvAdapter(nn.Module): | |
def __init__( | |
self, | |
in_channels: int, | |
bottleneck_channels: int = 16, | |
) -> None: | |
super().__init__() | |
assert in_channels > 0, f"Expected input_channels to be greater than 0, but got {in_channels}" | |
assert bottleneck_channels > 0, f"Expected bottleneck_channels to be greater than 0, but got {bottleneck_channels}" | |
self.adapter = nn.Sequential( | |
nn.Conv2d(in_channels, bottleneck_channels, kernel_size=1), | |
nn.GELU(), | |
nn.Conv2d(bottleneck_channels, in_channels, kernel_size=1), | |
) | |
nn.init.zeros_(self.adapter[2].weight) | |
nn.init.zeros_(self.adapter[2].bias) | |
def forward(self, x: Tensor) -> Tensor: | |
assert len(x.shape) == 4, f"Expected input to have shape (B, C, H, W), but got {x.shape}" | |
return x + self.adapter(x) | |
class ViTAdapter(nn.Module): | |
def __init__(self, input_dim, bottleneck_dim): | |
super().__init__() | |
self.adapter = nn.Sequential( | |
nn.Linear(input_dim, bottleneck_dim), | |
nn.GELU(), # ViT中常用GELU作为激活函数 | |
nn.Linear(bottleneck_dim, input_dim) | |
) | |
nn.init.zeros_(self.adapter[2].weight) | |
nn.init.zeros_(self.adapter[2].bias) | |
def forward(self, x: Tensor) -> Tensor: | |
assert len(x.shape) == 3, f"Expected input to have shape (B, N, C), but got {x.shape}" | |
return x + self.adapter(x) | |