Spaces:
Sleeping
Sleeping
File size: 7,259 Bytes
53b4cd0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 |
import gradio as gr
import torch
from PIL import Image
import numpy as np
from torchvision import models
from transformers import ViTForImageClassification
from torch import nn
from torch.cuda.amp import autocast
import os
# Global configuration
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"Using device: {device}")
# Label mapping (HAM10K)
label_mapping = {
0: "Меланома",
1: "Меланоцитарный невус",
2: "Базальноклеточная карцинома",
3: "Актинический кератоз",
4: "Доброкачественная кератоза",
5: "Дерматофиброма",
6: "Сосудистые поражения"
}
# Model paths
CHECKPOINTS_PATH = os.getenv("CHECKPOINTS_PATH", "./checkpoints")
# Model definitions
def get_efficientnet():
model = models.efficientnet_v2_s(weights="IMAGENET1K_V1")
model.classifier[1] = nn.Linear(1280, 7)
return model.to(device)
def get_deit():
model = ViTForImageClassification.from_pretrained(
'facebook/deit-base-patch16-224',
num_labels=7,
ignore_mismatched_sizes=True
)
return model.to(device)
# Transforms
def transform_image(image):
"""Transform PIL image to model input format"""
transform = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize(
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]
)
])
return transform(image).unsqueeze(0).to(device)
# Model Handler
class ModelHandler:
def __init__(self):
self.efficientnet = None
self.deit = None
self.models_loaded = False
self.load_models()
def load_models(self):
try:
# Load EfficientNet
self.efficientnet = get_efficientnet()
efficientnet_path = os.path.join(CHECKPOINTS_PATH, "efficientnet_best.pth")
self.efficientnet.load_state_dict(torch.load(efficientnet_path, map_location=device))
self.efficientnet.eval()
# Load DeiT
self.deit = get_deit()
deit_path = os.path.join(CHECKPOINTS_PATH, "deit_best.pth")
self.deit.load_state_dict(torch.load(deit_path, map_location=device))
self.deit.eval()
self.models_loaded = True
print("✅ Models loaded successfully")
except Exception as e:
print(f"❌ Error loading models: {str(e)}")
self.models_loaded = False
@torch.no_grad()
def predict_efficientnet(self, image):
if not self.models_loaded:
return {"error": "Модели не загружены"}
inputs = transform_image(image)
with autocast():
outputs = self.efficientnet(inputs)
probs = torch.nn.functional.softmax(outputs, dim=1)
return self._format_predictions(probs)
@torch.no_grad()
def predict_deit(self, image):
if not self.models_loaded:
return {"error": "Модели не загружены"}
inputs = transform_image(image)
with autocast():
outputs = self.deit(inputs).logits
probs = torch.nn.functional.softmax(outputs, dim=1)
return self._format_predictions(probs)
@torch.no_grad()
def predict_ensemble(self, image):
if not self.models_loaded:
return {"error": "Модели не загружены"}
inputs = transform_image(image)
with autocast():
# Get predictions from both models
eff_probs = torch.nn.functional.softmax(self.efficientnet(inputs), dim=1)
deit_probs = torch.nn.functional.softmax(self.deit(inputs).logits, dim=1)
# Ensemble prediction (average probabilities)
ensemble_probs = (eff_probs + deit_probs) / 2
return self._format_predictions(ensemble_probs)
def _format_predictions(self, probs):
top5_probs, top5_indices = torch.topk(probs, 5)
result = {}
for i in range(5):
idx = top5_indices[0][i].item()
label = label_mapping.get(idx, f"Класс {idx}")
result[label] = float(top5_probs[0][i].item() * 100)
return result
# Initialize model handler
model_handler = ModelHandler()
# Prediction functions
def predict_efficientnet(image):
if image is None:
return "⚠️ Загрузите изображение"
return model_handler.predict_efficientnet(image)
def predict_deit(image):
if image is None:
return "⚠️ Загрузите изображение"
return model_handler.predict_deit(image)
def predict_ensemble(image):
if image is None:
return "⚠️ Загрузите изображение"
return model_handler.predict_ensemble(image)
# Gradio Interface
def create_individual_tab(model_name, predict_fn):
with gr.Blocks():
with gr.Row():
with gr.Column(scale=1):
image_input = gr.Image(label="Загрузите изображение", type="pil")
predict_btn = gr.Button("Предсказать", variant="primary")
with gr.Column(scale=1):
result_output = gr.Label(label="Результаты")
predict_btn.click(
predict_fn,
inputs=image_input,
outputs=result_output
)
gr.Examples(
examples=["examples/akiec.jpg", "examples/bcc.jpg", "examples/df.jpg"],
inputs=image_input,
label="Примеры из ISIC"
)
# Create interface
interface = gr.TabbedInterface(
interface_list=[
lambda: create_individual_tab("EfficientNet", predict_efficientnet),
lambda: create_individual_tab("DeiT", predict_deit),
lambda: create_individual_tab("Ансамблевая модель", predict_ensemble)
],
tab_names=[
"EfficientNet",
"DeiT",
"Ансамблевая модель"
],
title="DermVision Pro",
description="""
# Дерматологический классификатор
Выберите вкладку для использования соответствующей модели:
- EfficientNet: традиционная CNN модель
- DeiT: Vision Transformer
- Ансамблевая модель: комбинация CNN и Vision Transformer
""",
theme=gr.themes.Soft(),
css="""
.container {max-width: 1200px; margin: auto;}
.gr-button {font-size: 1.1em; padding: 8px 16px;}
.gr-textbox {font-size: 1.1em;}
.gr-column {min-width: 400px;}
"""
)
# Add startup check
def check_models():
if not model_handler.models_loaded:
return "⚠️ Предупреждение: Модели не загружены"
return "✅ Модели готовы к предсказанию"
startup_status = check_models()
print(startup_status)
if __name__ == "__main__":
print("🚀 Запуск интерфейса...")
interface.launch() |