File size: 7,259 Bytes
53b4cd0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
import gradio as gr
import torch
from PIL import Image
import numpy as np
from torchvision import models
from transformers import ViTForImageClassification
from torch import nn
from torch.cuda.amp import autocast
import os

# Global configuration
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"Using device: {device}")

# Label mapping (HAM10K)
label_mapping = {
    0: "Меланома",
    1: "Меланоцитарный невус",
    2: "Базальноклеточная карцинома",
    3: "Актинический кератоз",
    4: "Доброкачественная кератоза",
    5: "Дерматофиброма",
    6: "Сосудистые поражения"
}

# Model paths
CHECKPOINTS_PATH = os.getenv("CHECKPOINTS_PATH", "./checkpoints")

# Model definitions
def get_efficientnet():
    model = models.efficientnet_v2_s(weights="IMAGENET1K_V1")
    model.classifier[1] = nn.Linear(1280, 7)
    return model.to(device)

def get_deit():
    model = ViTForImageClassification.from_pretrained(
        'facebook/deit-base-patch16-224',
        num_labels=7,
        ignore_mismatched_sizes=True
    )
    return model.to(device)

# Transforms
def transform_image(image):
    """Transform PIL image to model input format"""
    transform = transforms.Compose([
        transforms.Resize((224, 224)),
        transforms.ToTensor(),
        transforms.Normalize(
            mean=[0.485, 0.456, 0.406],
            std=[0.229, 0.224, 0.225]
        )
    ])
    return transform(image).unsqueeze(0).to(device)

# Model Handler
class ModelHandler:
    def __init__(self):
        self.efficientnet = None
        self.deit = None
        self.models_loaded = False
        self.load_models()
    
    def load_models(self):
        try:
            # Load EfficientNet
            self.efficientnet = get_efficientnet()
            efficientnet_path = os.path.join(CHECKPOINTS_PATH, "efficientnet_best.pth")
            self.efficientnet.load_state_dict(torch.load(efficientnet_path, map_location=device))
            self.efficientnet.eval()
            
            # Load DeiT
            self.deit = get_deit()
            deit_path = os.path.join(CHECKPOINTS_PATH, "deit_best.pth")
            self.deit.load_state_dict(torch.load(deit_path, map_location=device))
            self.deit.eval()
            
            self.models_loaded = True
            print("✅ Models loaded successfully")
        except Exception as e:
            print(f"❌ Error loading models: {str(e)}")
            self.models_loaded = False
    
    @torch.no_grad()
    def predict_efficientnet(self, image):
        if not self.models_loaded:
            return {"error": "Модели не загружены"}
        
        inputs = transform_image(image)
        with autocast():
            outputs = self.efficientnet(inputs)
            probs = torch.nn.functional.softmax(outputs, dim=1)
        
        return self._format_predictions(probs)

    @torch.no_grad()
    def predict_deit(self, image):
        if not self.models_loaded:
            return {"error": "Модели не загружены"}
        
        inputs = transform_image(image)
        with autocast():
            outputs = self.deit(inputs).logits
            probs = torch.nn.functional.softmax(outputs, dim=1)
        
        return self._format_predictions(probs)
    
    @torch.no_grad()
    def predict_ensemble(self, image):
        if not self.models_loaded:
            return {"error": "Модели не загружены"}
        
        inputs = transform_image(image)
        with autocast():
            # Get predictions from both models
            eff_probs = torch.nn.functional.softmax(self.efficientnet(inputs), dim=1)
            deit_probs = torch.nn.functional.softmax(self.deit(inputs).logits, dim=1)
            
            # Ensemble prediction (average probabilities)
            ensemble_probs = (eff_probs + deit_probs) / 2
        
        return self._format_predictions(ensemble_probs)
    
    def _format_predictions(self, probs):
        top5_probs, top5_indices = torch.topk(probs, 5)
        result = {}
        for i in range(5):
            idx = top5_indices[0][i].item()
            label = label_mapping.get(idx, f"Класс {idx}")
            result[label] = float(top5_probs[0][i].item() * 100)
        return result

# Initialize model handler
model_handler = ModelHandler()

# Prediction functions
def predict_efficientnet(image):
    if image is None:
        return "⚠️ Загрузите изображение"
    return model_handler.predict_efficientnet(image)

def predict_deit(image):
    if image is None:
        return "⚠️ Загрузите изображение"
    return model_handler.predict_deit(image)

def predict_ensemble(image):
    if image is None:
        return "⚠️ Загрузите изображение"
    return model_handler.predict_ensemble(image)

# Gradio Interface
def create_individual_tab(model_name, predict_fn):
    with gr.Blocks():
        with gr.Row():
            with gr.Column(scale=1):
                image_input = gr.Image(label="Загрузите изображение", type="pil")
                predict_btn = gr.Button("Предсказать", variant="primary")
            with gr.Column(scale=1):
                result_output = gr.Label(label="Результаты")
        
        predict_btn.click(
            predict_fn,
            inputs=image_input,
            outputs=result_output
        )
        
        gr.Examples(
            examples=["examples/akiec.jpg", "examples/bcc.jpg", "examples/df.jpg"],
            inputs=image_input,
            label="Примеры из ISIC"
        )

# Create interface
interface = gr.TabbedInterface(
    interface_list=[
        lambda: create_individual_tab("EfficientNet", predict_efficientnet),
        lambda: create_individual_tab("DeiT", predict_deit),
        lambda: create_individual_tab("Ансамблевая модель", predict_ensemble)
    ],
    tab_names=[
        "EfficientNet",
        "DeiT",
        "Ансамблевая модель"
    ],
    title="DermVision Pro",
    description="""
    # Дерматологический классификатор
    Выберите вкладку для использования соответствующей модели:
    - EfficientNet: традиционная CNN модель
    - DeiT: Vision Transformer
    - Ансамблевая модель: комбинация CNN и Vision Transformer
    """,
    theme=gr.themes.Soft(),
    css="""
    .container {max-width: 1200px; margin: auto;}
    .gr-button {font-size: 1.1em; padding: 8px 16px;}
    .gr-textbox {font-size: 1.1em;}
    .gr-column {min-width: 400px;}
    """
)

# Add startup check
def check_models():
    if not model_handler.models_loaded:
        return "⚠️ Предупреждение: Модели не загружены"
    return "✅ Модели готовы к предсказанию"

startup_status = check_models()
print(startup_status)

if __name__ == "__main__":
    print("🚀 Запуск интерфейса...")
    interface.launch()