File size: 2,368 Bytes
a023d1a 0c2acfc a023d1a ae69db8 a023d1a baa0eec |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 |
# 1. Импорт необходимых библиотек
import gradio as gr
from transformers import pipeline
# 2. Загрузка двух нейросетей
generator = pipeline("text2text-generation", model="google/flan-t5-small")
translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ru-en")
# 3. Создание функции для генерации ответа
def generate_response(prompt, language, temperature, max_length, history):
source_lang_code = "ru" if language == "ru" else "en"
target_lang_code = "ru" if language == "ru" else "en"
english_prompt = translator(prompt, src_lang=source_lang_code, tgt_lang="en")[0]['translation_text']
response_en = generator(
english_prompt,
max_length=max_length,
num_return_sequences=1,
do_sample=True,
temperature=temperature,
no_repeat_ngram_size=2
)[0]['generated_text']
final_response = translator(response_en, src_lang="en", tgt_lang=target_lang_code)[0]['translation_text']
history.append([prompt, final_response])
return history
# 4. Создание веб-интерфейса
with gr.Blocks(theme="soft", title="COLIN") as iface:
gr.Markdown("<h1>COLIN</h1>")
gr.Markdown("<h3>Ask questions in English or Russian.</h3>")
with gr.Row():
language_dropdown = gr.Dropdown(
["en", "ru"],
value="en",
label="Select Language"
)
chatbot = gr.Chatbot(label="Chat") # Исправлено здесь
textbox = gr.Textbox(placeholder="Enter your message here...")
with gr.Row():
gr.Markdown("<h3>Настройки ответа</h3>")
temperature_slider = gr.Slider(minimum=0.1, maximum=1.0, step=0.1, value=0.7, label="Temperature (Креативность)")
max_length_slider = gr.Slider(minimum=10, maximum=100, step=10, value=50, label="Max Length (Длина ответа)")
with gr.Row():
clear_btn = gr.Button("New Chat")
submit_btn = gr.Button("Submit")
submit_btn.click(
fn=generate_response,
inputs=[textbox, language_dropdown, temperature_slider, max_length_slider, chatbot],
outputs=[chatbot]
)
clear_btn.click(
fn=lambda: [],
inputs=[],
outputs=[chatbot]
)
iface.launch() |