Spaces:
Runtime error
Runtime error
gradio 5
#4
by
Lum4yx
- opened
- app.py +96 -67
- requirements.txt +4 -3
app.py
CHANGED
|
@@ -1,28 +1,19 @@
|
|
| 1 |
import argparse
|
| 2 |
import os
|
| 3 |
-
os.system("pip uninstall -y gradio")
|
| 4 |
-
os.system("pip install gradio==3.47.1")
|
| 5 |
-
|
| 6 |
import random
|
| 7 |
from collections import defaultdict
|
| 8 |
-
|
| 9 |
import cv2
|
| 10 |
import re
|
| 11 |
-
|
| 12 |
import numpy as np
|
| 13 |
from PIL import Image
|
| 14 |
import torch
|
| 15 |
import html
|
| 16 |
import gradio as gr
|
| 17 |
-
|
| 18 |
import torchvision.transforms as T
|
| 19 |
import torch.backends.cudnn as cudnn
|
| 20 |
-
|
| 21 |
from minigpt4.common.config import Config
|
| 22 |
-
|
| 23 |
from minigpt4.common.registry import registry
|
| 24 |
from minigpt4.conversation.conversation import Conversation, SeparatorStyle, Chat
|
| 25 |
-
|
| 26 |
# imports modules for registration
|
| 27 |
from minigpt4.datasets.builders import *
|
| 28 |
from minigpt4.models import *
|
|
@@ -32,6 +23,7 @@ from minigpt4.tasks import *
|
|
| 32 |
|
| 33 |
import socket
|
| 34 |
import os
|
|
|
|
| 35 |
|
| 36 |
def find_free_port(start_port, end_port):
|
| 37 |
for port in range(start_port, end_port + 1):
|
|
@@ -173,6 +165,10 @@ def escape_markdown(text):
|
|
| 173 |
|
| 174 |
|
| 175 |
def reverse_escape(text):
|
|
|
|
|
|
|
|
|
|
|
|
|
| 176 |
md_chars = ['\\<', '\\>']
|
| 177 |
|
| 178 |
for char in md_chars:
|
|
@@ -229,6 +225,8 @@ def visualize_all_bbox_together(image, generation):
|
|
| 229 |
|
| 230 |
if isinstance(image, str): # is a image path
|
| 231 |
raw_image = get_first_frame(image)
|
|
|
|
|
|
|
| 232 |
frame_rgb = cv2.cvtColor(raw_image, cv2.COLOR_BGR2RGB)
|
| 233 |
image = Image.fromarray(frame_rgb)
|
| 234 |
|
|
@@ -431,27 +429,20 @@ def gradio_reset(chat_state, img_list):
|
|
| 431 |
interactive=True), chat_state, img_list
|
| 432 |
|
| 433 |
|
| 434 |
-
def image_upload_trigger(upload_flag, replace_flag, img_list):
|
| 435 |
# set the upload flag to true when receive a new image.
|
| 436 |
# if there is an old image (and old conversation), set the replace flag to true to reset the conv later.
|
|
|
|
| 437 |
upload_flag = 1
|
| 438 |
if img_list:
|
| 439 |
replace_flag = 1
|
| 440 |
return upload_flag, replace_flag
|
| 441 |
|
| 442 |
|
| 443 |
-
def example_trigger(text_input, image, upload_flag, replace_flag, img_list):
|
| 444 |
-
# set the upload flag to true when receive a new image.
|
| 445 |
-
# if there is an old image (and old conversation), set the replace flag to true to reset the conv later.
|
| 446 |
-
upload_flag = 1
|
| 447 |
-
if img_list or replace_flag == 1:
|
| 448 |
-
replace_flag = 1
|
| 449 |
-
|
| 450 |
-
return upload_flag, replace_flag
|
| 451 |
-
|
| 452 |
-
|
| 453 |
def gradio_ask(user_message, chatbot, chat_state, gr_img, img_list, upload_flag, replace_flag):
|
| 454 |
print("+++gradio_ask+++")
|
|
|
|
|
|
|
| 455 |
|
| 456 |
if len(user_message) == 0:
|
| 457 |
text_box_show = 'Input should not be empty!'
|
|
@@ -462,7 +453,6 @@ def gradio_ask(user_message, chatbot, chat_state, gr_img, img_list, upload_flag,
|
|
| 462 |
print('chatbot:', chatbot)
|
| 463 |
print('chat_state:', chat_state)
|
| 464 |
|
| 465 |
-
|
| 466 |
if isinstance(gr_img, dict):
|
| 467 |
gr_img, mask = gr_img['image'], gr_img['mask']
|
| 468 |
else:
|
|
@@ -478,14 +468,22 @@ def gradio_ask(user_message, chatbot, chat_state, gr_img, img_list, upload_flag,
|
|
| 478 |
if chat_state is None:
|
| 479 |
chat_state = CONV_VISION.copy()
|
| 480 |
|
| 481 |
-
if upload_flag
|
|
|
|
| 482 |
if replace_flag:
|
| 483 |
chat_state = CONV_VISION.copy() # new image, reset everything
|
| 484 |
replace_flag = 0
|
| 485 |
chatbot = []
|
| 486 |
img_list = []
|
| 487 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 488 |
upload_flag = 0
|
|
|
|
|
|
|
| 489 |
|
| 490 |
chat.ask(user_message, chat_state)
|
| 491 |
print('user_message: ', user_message)
|
|
@@ -531,32 +529,56 @@ def process_english_text(text):
|
|
| 531 |
|
| 532 |
return text
|
| 533 |
|
| 534 |
-
|
| 535 |
def gradio_stream_answer(chatbot, chat_state, img_list, temperature):
|
| 536 |
print('---gradio_stream_answer---')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 537 |
if len(img_list) > 0:
|
| 538 |
if not isinstance(img_list[0], torch.Tensor):
|
| 539 |
chat.encode_img(img_list)
|
| 540 |
print(chat)
|
| 541 |
-
|
| 542 |
-
|
| 543 |
-
|
| 544 |
-
|
| 545 |
-
|
| 546 |
-
|
| 547 |
-
|
| 548 |
-
|
| 549 |
-
|
| 550 |
-
|
| 551 |
-
|
| 552 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 553 |
yield chatbot, chat_state
|
| 554 |
-
|
| 555 |
-
print('output:', output)
|
| 556 |
return chatbot, chat_state
|
| 557 |
|
| 558 |
|
| 559 |
def gradio_visualize(chatbot, gr_img):
|
|
|
|
|
|
|
|
|
|
|
|
|
| 560 |
if isinstance(gr_img, dict):
|
| 561 |
gr_img, mask = gr_img['image'], gr_img['mask']
|
| 562 |
|
|
@@ -589,8 +611,6 @@ def gradio_taskselect(idx):
|
|
| 589 |
return prompt_list[idx], instruct_list[idx]
|
| 590 |
|
| 591 |
|
| 592 |
-
|
| 593 |
-
|
| 594 |
chat = Chat(model, vis_processor, device=device)
|
| 595 |
|
| 596 |
title = """<h1 align="center">Emotion-LLaMA Demo</h1>"""
|
|
@@ -604,11 +624,11 @@ For Abilities Involging Multimodal Emotion Understanding:
|
|
| 604 |
3. Visual: Click **Send** to generate a visual description.
|
| 605 |
4. Audio: Click **Send** to generate an audio description.
|
| 606 |
5. No Tag: Input whatever you want and click **Send** without any tagging.
|
| 607 |
-
|
| 608 |
You can also simply chat in free form!
|
| 609 |
'''
|
| 610 |
|
| 611 |
text_input = gr.Textbox(placeholder='Upload your image and chat', interactive=True, show_label=False, container=False, scale=8)
|
|
|
|
| 612 |
with gr.Blocks() as demo:
|
| 613 |
gr.Markdown(title)
|
| 614 |
# gr.Markdown(description)
|
|
@@ -637,6 +657,7 @@ with gr.Blocks() as demo:
|
|
| 637 |
img_list = gr.State(value=[])
|
| 638 |
chatbot = gr.Chatbot(label='Emotion-LLaMA')
|
| 639 |
|
|
|
|
| 640 |
dataset = gr.Dataset(
|
| 641 |
components=[gr.Textbox(visible=False)],
|
| 642 |
samples=[['No Tag'], ['reason'], ['emotion'], ['visual'], ['audio']],
|
|
@@ -650,36 +671,44 @@ with gr.Blocks() as demo:
|
|
| 650 |
|
| 651 |
upload_flag = gr.State(value=0)
|
| 652 |
replace_flag = gr.State(value=0)
|
| 653 |
-
|
|
|
|
|
|
|
| 654 |
|
|
|
|
| 655 |
with gr.Row():
|
| 656 |
with gr.Column():
|
| 657 |
-
gr.Examples(
|
| 658 |
-
|
| 659 |
-
|
| 660 |
-
|
| 661 |
-
|
| 662 |
-
|
| 663 |
-
|
| 664 |
-
|
| 665 |
-
|
|
|
|
|
|
|
|
|
|
| 666 |
with gr.Column():
|
| 667 |
-
gr.Examples(
|
| 668 |
-
[
|
| 669 |
-
|
| 670 |
-
|
| 671 |
-
|
| 672 |
-
|
| 673 |
-
|
| 674 |
-
|
| 675 |
-
|
|
|
|
|
|
|
|
|
|
| 676 |
|
| 677 |
dataset.click(
|
| 678 |
gradio_taskselect,
|
| 679 |
inputs=[dataset],
|
| 680 |
outputs=[text_input, task_inst],
|
| 681 |
show_progress="hidden",
|
| 682 |
-
postprocess=False,
|
| 683 |
queue=False,
|
| 684 |
)
|
| 685 |
|
|
@@ -687,11 +716,11 @@ with gr.Blocks() as demo:
|
|
| 687 |
gradio_ask,
|
| 688 |
[text_input, chatbot, chat_state, image, img_list, upload_flag, replace_flag],
|
| 689 |
[text_input, chatbot, chat_state, img_list, upload_flag, replace_flag], queue=False
|
| 690 |
-
).
|
| 691 |
gradio_stream_answer,
|
| 692 |
[chatbot, chat_state, img_list, temperature],
|
| 693 |
[chatbot, chat_state]
|
| 694 |
-
).
|
| 695 |
gradio_visualize,
|
| 696 |
[chatbot, image],
|
| 697 |
[chatbot],
|
|
@@ -702,11 +731,11 @@ with gr.Blocks() as demo:
|
|
| 702 |
gradio_ask,
|
| 703 |
[text_input, chatbot, chat_state, image, img_list, upload_flag, replace_flag],
|
| 704 |
[text_input, chatbot, chat_state, img_list, upload_flag, replace_flag], queue=False
|
| 705 |
-
).
|
| 706 |
gradio_stream_answer,
|
| 707 |
[chatbot, chat_state, img_list, temperature],
|
| 708 |
[chatbot, chat_state]
|
| 709 |
-
).
|
| 710 |
gradio_visualize,
|
| 711 |
[chatbot, image],
|
| 712 |
[chatbot],
|
|
@@ -715,5 +744,5 @@ with gr.Blocks() as demo:
|
|
| 715 |
|
| 716 |
clear.click(gradio_reset, [chat_state, img_list], [chatbot, image, text_input, chat_state, img_list], queue=False)
|
| 717 |
|
| 718 |
-
demo.
|
| 719 |
-
|
|
|
|
| 1 |
import argparse
|
| 2 |
import os
|
|
|
|
|
|
|
|
|
|
| 3 |
import random
|
| 4 |
from collections import defaultdict
|
|
|
|
| 5 |
import cv2
|
| 6 |
import re
|
|
|
|
| 7 |
import numpy as np
|
| 8 |
from PIL import Image
|
| 9 |
import torch
|
| 10 |
import html
|
| 11 |
import gradio as gr
|
|
|
|
| 12 |
import torchvision.transforms as T
|
| 13 |
import torch.backends.cudnn as cudnn
|
|
|
|
| 14 |
from minigpt4.common.config import Config
|
|
|
|
| 15 |
from minigpt4.common.registry import registry
|
| 16 |
from minigpt4.conversation.conversation import Conversation, SeparatorStyle, Chat
|
|
|
|
| 17 |
# imports modules for registration
|
| 18 |
from minigpt4.datasets.builders import *
|
| 19 |
from minigpt4.models import *
|
|
|
|
| 23 |
|
| 24 |
import socket
|
| 25 |
import os
|
| 26 |
+
import spaces
|
| 27 |
|
| 28 |
def find_free_port(start_port, end_port):
|
| 29 |
for port in range(start_port, end_port + 1):
|
|
|
|
| 165 |
|
| 166 |
|
| 167 |
def reverse_escape(text):
|
| 168 |
+
# Add safety check for None values
|
| 169 |
+
if text is None:
|
| 170 |
+
return ""
|
| 171 |
+
|
| 172 |
md_chars = ['\\<', '\\>']
|
| 173 |
|
| 174 |
for char in md_chars:
|
|
|
|
| 225 |
|
| 226 |
if isinstance(image, str): # is a image path
|
| 227 |
raw_image = get_first_frame(image)
|
| 228 |
+
if raw_image is None:
|
| 229 |
+
return None, ''
|
| 230 |
frame_rgb = cv2.cvtColor(raw_image, cv2.COLOR_BGR2RGB)
|
| 231 |
image = Image.fromarray(frame_rgb)
|
| 232 |
|
|
|
|
| 429 |
interactive=True), chat_state, img_list
|
| 430 |
|
| 431 |
|
| 432 |
+
def image_upload_trigger(gr_img, upload_flag, replace_flag, img_list):
|
| 433 |
# set the upload flag to true when receive a new image.
|
| 434 |
# if there is an old image (and old conversation), set the replace flag to true to reset the conv later.
|
| 435 |
+
print(f"Image upload triggered: {gr_img}")
|
| 436 |
upload_flag = 1
|
| 437 |
if img_list:
|
| 438 |
replace_flag = 1
|
| 439 |
return upload_flag, replace_flag
|
| 440 |
|
| 441 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 442 |
def gradio_ask(user_message, chatbot, chat_state, gr_img, img_list, upload_flag, replace_flag):
|
| 443 |
print("+++gradio_ask+++")
|
| 444 |
+
print(f"gr_img: {gr_img}, type: {type(gr_img)}")
|
| 445 |
+
print(f"upload_flag: {upload_flag}, replace_flag: {replace_flag}")
|
| 446 |
|
| 447 |
if len(user_message) == 0:
|
| 448 |
text_box_show = 'Input should not be empty!'
|
|
|
|
| 453 |
print('chatbot:', chatbot)
|
| 454 |
print('chat_state:', chat_state)
|
| 455 |
|
|
|
|
| 456 |
if isinstance(gr_img, dict):
|
| 457 |
gr_img, mask = gr_img['image'], gr_img['mask']
|
| 458 |
else:
|
|
|
|
| 468 |
if chat_state is None:
|
| 469 |
chat_state = CONV_VISION.copy()
|
| 470 |
|
| 471 |
+
# Always process the image if it exists and upload_flag is set or img_list is empty
|
| 472 |
+
if gr_img is not None and (upload_flag or len(img_list) == 0):
|
| 473 |
if replace_flag:
|
| 474 |
chat_state = CONV_VISION.copy() # new image, reset everything
|
| 475 |
replace_flag = 0
|
| 476 |
chatbot = []
|
| 477 |
img_list = []
|
| 478 |
+
try:
|
| 479 |
+
llm_message = chat.upload_img(gr_img, chat_state, img_list)
|
| 480 |
+
print(f"Image uploaded successfully. img_list length: {len(img_list)}")
|
| 481 |
+
except Exception as e:
|
| 482 |
+
print(f"Error uploading image: {e}")
|
| 483 |
+
return "Error uploading image. Please try again.", chatbot, chat_state, img_list, 0, replace_flag
|
| 484 |
upload_flag = 0
|
| 485 |
+
elif gr_img is None:
|
| 486 |
+
return "Please upload a video first.", chatbot, chat_state, img_list, upload_flag, replace_flag
|
| 487 |
|
| 488 |
chat.ask(user_message, chat_state)
|
| 489 |
print('user_message: ', user_message)
|
|
|
|
| 529 |
|
| 530 |
return text
|
| 531 |
|
| 532 |
+
@spaces.GPU
|
| 533 |
def gradio_stream_answer(chatbot, chat_state, img_list, temperature):
|
| 534 |
print('---gradio_stream_answer---')
|
| 535 |
+
print(f"img_list length: {len(img_list)}")
|
| 536 |
+
|
| 537 |
+
# Check if img_list is empty
|
| 538 |
+
if len(img_list) == 0:
|
| 539 |
+
error_msg = "No image/video uploaded. Please upload a video first."
|
| 540 |
+
print(error_msg)
|
| 541 |
+
if len(chatbot) > 0:
|
| 542 |
+
chatbot[-1][1] = error_msg
|
| 543 |
+
yield chatbot, chat_state
|
| 544 |
+
return
|
| 545 |
+
|
| 546 |
if len(img_list) > 0:
|
| 547 |
if not isinstance(img_list[0], torch.Tensor):
|
| 548 |
chat.encode_img(img_list)
|
| 549 |
print(chat)
|
| 550 |
+
|
| 551 |
+
try:
|
| 552 |
+
streamer = chat.stream_answer(conv=chat_state,
|
| 553 |
+
img_list=img_list,
|
| 554 |
+
temperature=temperature,
|
| 555 |
+
max_new_tokens=500,
|
| 556 |
+
max_length=2000)
|
| 557 |
+
output = ''
|
| 558 |
+
print('streamer:', streamer)
|
| 559 |
+
for new_output in streamer:
|
| 560 |
+
escapped = escape_markdown(new_output)
|
| 561 |
+
output += escapped
|
| 562 |
+
chatbot[-1][1] = output
|
| 563 |
+
chatbot[-1][1] = process_english_text(chatbot[-1][1])
|
| 564 |
+
yield chatbot, chat_state
|
| 565 |
+
chat_state.messages[-1][1] = '</s>'
|
| 566 |
+
print('output:', output)
|
| 567 |
+
except Exception as e:
|
| 568 |
+
error_msg = f"Error generating response: {str(e)}"
|
| 569 |
+
print(error_msg)
|
| 570 |
+
if len(chatbot) > 0:
|
| 571 |
+
chatbot[-1][1] = error_msg
|
| 572 |
yield chatbot, chat_state
|
| 573 |
+
|
|
|
|
| 574 |
return chatbot, chat_state
|
| 575 |
|
| 576 |
|
| 577 |
def gradio_visualize(chatbot, gr_img):
|
| 578 |
+
# Safety check for empty chatbot or None response
|
| 579 |
+
if len(chatbot) == 0 or chatbot[-1][1] is None:
|
| 580 |
+
return chatbot
|
| 581 |
+
|
| 582 |
if isinstance(gr_img, dict):
|
| 583 |
gr_img, mask = gr_img['image'], gr_img['mask']
|
| 584 |
|
|
|
|
| 611 |
return prompt_list[idx], instruct_list[idx]
|
| 612 |
|
| 613 |
|
|
|
|
|
|
|
| 614 |
chat = Chat(model, vis_processor, device=device)
|
| 615 |
|
| 616 |
title = """<h1 align="center">Emotion-LLaMA Demo</h1>"""
|
|
|
|
| 624 |
3. Visual: Click **Send** to generate a visual description.
|
| 625 |
4. Audio: Click **Send** to generate an audio description.
|
| 626 |
5. No Tag: Input whatever you want and click **Send** without any tagging.
|
|
|
|
| 627 |
You can also simply chat in free form!
|
| 628 |
'''
|
| 629 |
|
| 630 |
text_input = gr.Textbox(placeholder='Upload your image and chat', interactive=True, show_label=False, container=False, scale=8)
|
| 631 |
+
|
| 632 |
with gr.Blocks() as demo:
|
| 633 |
gr.Markdown(title)
|
| 634 |
# gr.Markdown(description)
|
|
|
|
| 657 |
img_list = gr.State(value=[])
|
| 658 |
chatbot = gr.Chatbot(label='Emotion-LLaMA')
|
| 659 |
|
| 660 |
+
# Updated Dataset component for Gradio 5
|
| 661 |
dataset = gr.Dataset(
|
| 662 |
components=[gr.Textbox(visible=False)],
|
| 663 |
samples=[['No Tag'], ['reason'], ['emotion'], ['visual'], ['audio']],
|
|
|
|
| 671 |
|
| 672 |
upload_flag = gr.State(value=0)
|
| 673 |
replace_flag = gr.State(value=0)
|
| 674 |
+
|
| 675 |
+
# Updated upload trigger for Gradio 5 - fixed parameter order
|
| 676 |
+
image.upload(image_upload_trigger, [image, upload_flag, replace_flag, img_list], [upload_flag, replace_flag])
|
| 677 |
|
| 678 |
+
# Updated Examples component for Gradio 5 - this is the key fix!
|
| 679 |
with gr.Row():
|
| 680 |
with gr.Column():
|
| 681 |
+
examples1 = gr.Examples(
|
| 682 |
+
examples=[
|
| 683 |
+
["examples/samplenew_00004251.mp4", "[detection] face"],
|
| 684 |
+
["examples/sample_00000338.mp4", "The person in video says: Oh no, my phone and wallet are all in my bag. [emotion] Please determine which emotion label in the video represents: happy, sad, neutral, angry, worried, surprise."],
|
| 685 |
+
["examples/sample_00000669.mp4", "The person in video says: Why are you looking at me like this? It's just a woman, so you have to have something to do with me. [emotion] Determine the emotional state shown in the video, choosing from happy, sad, neutral, angry, worried, or surprise."],
|
| 686 |
+
["examples/sample_00003462.mp4", "The person in video says: Do you believe that you push me around? [emotion] Assess and label the emotion evident in the video: could it be happy, sad, neutral, angry, worried, surprise?"],
|
| 687 |
+
["examples/sample_00000727.mp4", "The person in video says: No, this, I have to get up! You, I'm sorry, everyone. I'm sorry, it's from the German side. [emotion] Identify the displayed emotion in the video: is it happy, sad, neutral, angry, worried, or surprise?"],
|
| 688 |
+
["examples/samplenew_00061200.mp4", "The person in video says: Me: I'm not going in anymore, scared. [emotion] Identify the displayed emotion in the video: is it happy, sad, neutral, angry, fear, contempt, doubt, worried, or surprise?"],
|
| 689 |
+
],
|
| 690 |
+
inputs=[image, text_input],
|
| 691 |
+
# Remove fn and outputs - let Examples handle this automatically in Gradio 5
|
| 692 |
+
)
|
| 693 |
with gr.Column():
|
| 694 |
+
examples2 = gr.Examples(
|
| 695 |
+
examples=[
|
| 696 |
+
["examples/samplenew_00051251.mp4", "In what state is the person in the video, say the following: \"Do you really think so?\""],
|
| 697 |
+
["examples/sample_00004735.mp4", "[visual] What are the emotions of the woman in the video?"],
|
| 698 |
+
["examples/sample_00002422.mp4", "[audio] Analyze the speaker's voice in the video."],
|
| 699 |
+
["examples/sample_00001073.mp4", "The person in video says: Make him different from before. I like the way you are now. [reason] Please analyze all the clues in the video and reason out the emotional label of the person in the video."],
|
| 700 |
+
["examples/sample_00004671.mp4", "The person in video says: Won't you? Impossible! Fan Xiaomei is not such a person. [reason] What are the facial expressions and vocal tone used in the video? What is the intended meaning behind his words? Which emotion does this reflect?"],
|
| 701 |
+
["examples/sample_00005854.mp4", "The person in video says: Bastard! Boss, you don't choose, you prefer. [reason] Please integrate information from various modalities to infer the emotional category of the person in the video."],
|
| 702 |
+
],
|
| 703 |
+
inputs=[image, text_input],
|
| 704 |
+
# Remove fn and outputs - let Examples handle this automatically in Gradio 5
|
| 705 |
+
)
|
| 706 |
|
| 707 |
dataset.click(
|
| 708 |
gradio_taskselect,
|
| 709 |
inputs=[dataset],
|
| 710 |
outputs=[text_input, task_inst],
|
| 711 |
show_progress="hidden",
|
|
|
|
| 712 |
queue=False,
|
| 713 |
)
|
| 714 |
|
|
|
|
| 716 |
gradio_ask,
|
| 717 |
[text_input, chatbot, chat_state, image, img_list, upload_flag, replace_flag],
|
| 718 |
[text_input, chatbot, chat_state, img_list, upload_flag, replace_flag], queue=False
|
| 719 |
+
).then(
|
| 720 |
gradio_stream_answer,
|
| 721 |
[chatbot, chat_state, img_list, temperature],
|
| 722 |
[chatbot, chat_state]
|
| 723 |
+
).then(
|
| 724 |
gradio_visualize,
|
| 725 |
[chatbot, image],
|
| 726 |
[chatbot],
|
|
|
|
| 731 |
gradio_ask,
|
| 732 |
[text_input, chatbot, chat_state, image, img_list, upload_flag, replace_flag],
|
| 733 |
[text_input, chatbot, chat_state, img_list, upload_flag, replace_flag], queue=False
|
| 734 |
+
).then(
|
| 735 |
gradio_stream_answer,
|
| 736 |
[chatbot, chat_state, img_list, temperature],
|
| 737 |
[chatbot, chat_state]
|
| 738 |
+
).then(
|
| 739 |
gradio_visualize,
|
| 740 |
[chatbot, image],
|
| 741 |
[chatbot],
|
|
|
|
| 744 |
|
| 745 |
clear.click(gradio_reset, [chat_state, img_list], [chatbot, image, text_input, chat_state, img_list], queue=False)
|
| 746 |
|
| 747 |
+
demo.queue()
|
| 748 |
+
demo.launch(share=True)
|
requirements.txt
CHANGED
|
@@ -1,5 +1,3 @@
|
|
| 1 |
-
gradio==3.47.1
|
| 2 |
-
gradio_client==0.6.0
|
| 3 |
decorator==4.4.2
|
| 4 |
moviepy==1.0.3
|
| 5 |
decord==0.6.0
|
|
@@ -15,6 +13,9 @@ bitsandbytes==0.41.0
|
|
| 15 |
scipy
|
| 16 |
huggingface_hub
|
| 17 |
torch==2.1.2
|
| 18 |
-
torchvision
|
| 19 |
timm==0.6.13
|
| 20 |
transformers==4.30.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
decorator==4.4.2
|
| 2 |
moviepy==1.0.3
|
| 3 |
decord==0.6.0
|
|
|
|
| 13 |
scipy
|
| 14 |
huggingface_hub
|
| 15 |
torch==2.1.2
|
| 16 |
+
torchvision
|
| 17 |
timm==0.6.13
|
| 18 |
transformers==4.30.0
|
| 19 |
+
gradio
|
| 20 |
+
gradio_client
|
| 21 |
+
numpy<2.0
|