File size: 4,225 Bytes
cf4a958
 
4d6e8c2
 
 
 
 
 
 
 
 
b133152
c5c3dc9
cf4a958
39943c6
b133152
 
4d6e8c2
 
731e8c7
1c33274
70f5f26
1c33274
70f5f26
4d6e8c2
 
70f5f26
 
731e8c7
4d6e8c2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
70f5f26
 
 
 
 
97e876f
f1edb98
82563c7
2b7b5be
 
3bd9ba6
2b7b5be
3bd9ba6
2b7b5be
 
3bd9ba6
2b7b5be
b133152
 
5e2c656
f1edb98
b133152
 
 
 
 
 
97e876f
f1edb98
 
 
b133152
c5c3dc9
b133152
c5c3dc9
ccf8d15
70f5f26
 
 
 
 
4d6e8c2
 
 
 
 
 
 
 
 
 
 
 
70f5f26
4d6e8c2
 
 
 
1c33274
4d6e8c2
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
from transformers import AutoTokenizer, AutoModelForSequenceClassification, MobileBertTokenizerFast

from fastapi import APIRouter
from datetime import datetime
from datasets import load_dataset
from sklearn.metrics import accuracy_score
import random

from .utils.evaluation import TextEvaluationRequest
from .utils.emissions import tracker, clean_emissions_data, get_space_info

import numpy as np
import torch




router = APIRouter()

DESCRIPTION = "FrugalDisinfoHunter Model"
ROUTE = "/text"

@router.post(ROUTE, tags=["Text Task"], 
             description=DESCRIPTION)
async def evaluate_text(request: TextEvaluationRequest):
    """
    Evaluate text classification for climate disinformation detection.
    
    Current Model: FrugalDisinfoHunter
    """
    # Get space info
    username, space_url = get_space_info()

    # Define the label mapping
    LABEL_MAPPING = {
        "0_not_relevant": 0,
        "1_not_happening": 1,
        "2_not_human": 2,
        "3_not_bad": 3,
        "4_solutions_harmful_unnecessary": 4,
        "5_science_unreliable": 5,
        "6_proponents_biased": 6,
        "7_fossil_fuels_needed": 7
    }

    # Load and prepare the dataset
    dataset = load_dataset(request.dataset_name)

    # Convert string labels to integers
    dataset = dataset.map(lambda x: {"label": LABEL_MAPPING[x["label"]]})

    # Split dataset
    train_test = dataset["train"].train_test_split(test_size=request.test_size, seed=request.test_seed)
    test_dataset = train_test["test"]
    
    # Start tracking emissions
    tracker.start()
    tracker.start_task("inference")

    #--------------------------------------------------------------------------------------------
    # YOUR MODEL INFERENCE CODE HERE
    # Update the code below to replace the random baseline by your model inference within the inference pass where the energy consumption and emissions are tracked.
    #--------------------------------------------------------------------------------------------   


    # Model and Tokenizer
    # Model and Tokenizer - use the same model name for both
    model_name = "Zen0/FrugalDisinfoHunter"
    model = AutoModelForSequenceClassification.from_pretrained(
        model_name,
        num_labels=8,
        output_hidden_states=True,
        problem_type="single_label_classification"
    )
    tokenizer = AutoTokenizer.from_pretrained(model_name)  # Use the same model_name
    
    # Tokenize the test data
    test_texts = test_dataset["quote"] 
    inputs = tokenizer(test_texts, padding=True, truncation=True, return_tensors="pt", max_length=512)
    
    # Move model and inputs to GPU if available
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    model.to(device)
    inputs = {key: val.to(device) for key, val in inputs.items()}
    
    # Run inference on the dataset using the model
    with torch.no_grad():  # Disable gradient calculations
        outputs = model(**inputs)
        logits = outputs.logits
    
    # Get predictions from the logits
    predictions = torch.argmax(logits, dim=-1).cpu().numpy()
    
    true_labels = test_dataset['label']

    #--------------------------------------------------------------------------------------------
    # YOUR MODEL INFERENCE STOPS HERE
    #--------------------------------------------------------------------------------------------   

    
    # Stop tracking emissions
    emissions_data = tracker.stop_task()
    
    # Calculate accuracy
    accuracy = accuracy_score(true_labels, predictions)
    
    # Prepare results dictionary
    results = {
        "username": username,
        "space_url": space_url,
        "submission_timestamp": datetime.now().isoformat(),
        "model_description": DESCRIPTION,
        "accuracy": float(accuracy),
        "energy_consumed_wh": emissions_data.energy_consumed * 1000,
        "emissions_gco2eq": emissions_data.emissions * 1000,
        "emissions_data": clean_emissions_data(emissions_data),
        "api_route": ROUTE,
        "dataset_config": {
            "dataset_name": request.dataset_name,
            "test_size": request.test_size,
            "test_seed": request.test_seed
        }
    }
    
    return results