Spaces:
Runtime error
Runtime error
import os | |
import random | |
import uuid | |
import json | |
import time | |
import asyncio | |
from threading import Thread | |
import gradio as gr | |
import spaces | |
import torch | |
import numpy as np | |
from PIL import Image, ImageOps | |
# import cv2 # not needed anymore | |
from transformers import ( | |
Qwen2_5_VLForConditionalGeneration, | |
AutoProcessor, | |
TextIteratorStreamer, | |
) | |
from transformers.image_utils import load_image | |
# Optional docling imports (unused now but kept for easy re-enable) | |
# from docling_core.types.doc import DoclingDocument, DocTagsDocument | |
import re | |
import ast | |
import html | |
# --------------------------- | |
# Constants & device | |
# --------------------------- | |
MAX_MAX_NEW_TOKENS = 2048 | |
DEFAULT_MAX_NEW_TOKENS = 1024 | |
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096")) | |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") | |
# --------------------------- | |
# Load ONLY Typhoon OCR 20B | |
# --------------------------- | |
MODEL_ID = "scb10x/typhoon-ocr-20b" # <- 20B model | |
processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True) | |
model = Qwen2_5_VLForConditionalGeneration.from_pretrained( | |
MODEL_ID, | |
trust_remote_code=True, | |
torch_dtype=torch.float16 | |
).to(device).eval() | |
# --------------------------- | |
# (Optional) image helpers | |
# --------------------------- | |
def add_random_padding(image, min_percent=0.1, max_percent=0.10): | |
image = image.convert("RGB") | |
width, height = image.size | |
pad_w_percent = random.uniform(min_percent, max_percent) | |
pad_h_percent = random.uniform(min_percent, max_percent) | |
pad_w = int(width * pad_w_percent) | |
pad_h = int(height * pad_h_percent) | |
corner_pixel = image.getpixel((0, 0)) | |
padded_image = ImageOps.expand(image, border=(pad_w, pad_h, pad_w, pad_h), fill=corner_pixel) | |
return padded_image | |
def normalize_values(text, target_max=500): | |
def normalize_list(values): | |
max_value = max(values) if values else 1 | |
return [round((v / max_value) * target_max) for v in values] | |
def process_match(match): | |
num_list = ast.literal_eval(match.group(0)) | |
normalized = normalize_list(num_list) | |
return "".join([f"<loc_{num}>" for num in normalized]) | |
pattern = r"\[([\d\.\s,]+)\]" | |
return re.sub(pattern, process_match, text) | |
# --------------------------- | |
# Image generation only | |
# --------------------------- | |
def generate_image( | |
text: str, | |
image: Image.Image, | |
max_new_tokens: int = 2048, | |
temperature: float = 0.1, | |
top_p: float = 0.9, | |
top_k: int = 50, | |
repetition_penalty: float = 1.2, | |
): | |
"""Generate OCR/vision response for a single image with Typhoon OCR 20B.""" | |
if image is None: | |
yield "Please upload an image." | |
return | |
images = [image] | |
messages = [ | |
{ | |
"role": "user", | |
"content": [{"type": "image"} for _ in images] + [ | |
{"type": "text", "text": text} | |
] | |
} | |
] | |
prompt = processor.apply_chat_template(messages, add_generation_prompt=True) | |
inputs = processor(text=prompt, images=images, return_tensors="pt").to(device) | |
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True) | |
generation_kwargs = { | |
**inputs, | |
"streamer": streamer, | |
"max_new_tokens": max_new_tokens, | |
"temperature": temperature, | |
"top_p": top_p, | |
"top_k": top_k, | |
"repetition_penalty": repetition_penalty, | |
} | |
thread = Thread(target=model.generate, kwargs=generation_kwargs) | |
thread.start() | |
buffer = "" | |
for new_text in streamer: | |
buffer += new_text.replace("<|im_end|>", "") | |
yield buffer | |
# --------------------------- | |
# Minimal UI (Image only) | |
# --------------------------- | |
css = """ | |
.submit-btn { | |
background-color: #2980b9 !important; | |
color: white !important; | |
} | |
.submit-btn:hover { | |
background-color: #3498db !important; | |
} | |
""" | |
with gr.Blocks(css=css, theme="bethecloud/storj_theme") as demo: | |
gr.Markdown("# **Typhoon OCR 20B**") | |
with gr.Row(): | |
with gr.Column(): | |
image_query = gr.Textbox(label="Query Input", placeholder="e.g., \"OCR the image\" or task instruction…") | |
image_upload = gr.Image(type="pil", label="Image") | |
image_submit = gr.Button("Submit", elem_classes="submit-btn") | |
with gr.Accordion("Advanced options", open=False): | |
max_new_tokens = gr.Slider(label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS) | |
temperature = gr.Slider(label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.1) | |
top_p = gr.Slider(label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9) | |
top_k = gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50) | |
repetition_penalty = gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2) | |
# Right column: ONLY output (no model info, no radios) | |
with gr.Column(): | |
output = gr.Textbox(label="Output", interactive=False, lines=12, scale=2) | |
image_submit.click( | |
fn=generate_image, | |
inputs=[image_query, image_upload, max_new_tokens, temperature, top_p, top_k, repetition_penalty], | |
outputs=output | |
) | |
if __name__ == "__main__": | |
demo.queue(max_size=30).launch(share=True, mcp_server=True, ssr_mode=False, show_error=True) | |