Spaces:
Sleeping
Sleeping
File size: 5,059 Bytes
fe3ca1d c3ce72d f1d52bb fe3ca1d e29313f fe3ca1d 0dec9f5 e92ac40 f1d52bb e92ac40 f1d52bb e92ac40 fe3ca1d 0dec9f5 e92ac40 fba219b e92ac40 fba219b e92ac40 fe3ca1d e29313f fe3ca1d e92ac40 e29313f e92ac40 fe3ca1d e29313f c3ce72d e92ac40 e29313f fe3ca1d e92ac40 e29313f fe3ca1d eebddbb e92ac40 d85795c fe3ca1d d85795c eebddbb fe3ca1d eebddbb fe3ca1d eebddbb fe3ca1d eebddbb 3b268ca eebddbb e29313f 7af42b0 eebddbb 3b268ca e92ac40 e29313f fe3ca1d e92ac40 e29313f fe3ca1d d85795c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 |
import gradio as gr
import numpy as np
import random
import spaces
import os
import torch
import re
from PIL import Image
from diffusers import DiffusionPipeline, AutoencoderTiny
from huggingface_hub import login
from live_preview_helpers import flux_pipe_call_that_returns_an_iterable_of_images
# Authenticate for gated repo access
hf_token = os.environ.get("HF_TOKEN")
if hf_token:
login(token=hf_token)
dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"
# ✅ DO NOT CHANGE: Working pipeline using taef1
taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device)
pipe = DiffusionPipeline.from_pretrained(
"black-forest-labs/FLUX.1-dev",
torch_dtype=dtype,
token=hf_token,
vae=taef1
).to(device)
pipe.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(pipe)
pipe.load_lora_weights("ZennyKenny/flux_lora_natalie-diffusion")
# Ensure image_preview dir exists
os.makedirs("image_preview", exist_ok=True)
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048
def sanitize_filename(name):
return re.sub(r"[^a-zA-Z0-9_-]", "_", name)[:80]
@spaces.GPU(duration=75)
def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, guidance_scale=3.5, num_inference_steps=28, progress=gr.Progress(track_tqdm=True)):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed)
full_prompt = f"XTON {prompt}"
for img in pipe.flux_pipe_call_that_returns_an_iterable_of_images(
prompt=full_prompt,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
width=width,
height=height,
generator=generator,
output_type="pil",
):
# Save image to /image_preview
safe_name = sanitize_filename(prompt)
img_path = f"image_preview/{safe_name}_{seed}.jpg"
img.convert("RGB").save(img_path, "JPEG", quality=60)
# Return image and updated list of previews
previews = [f"image_preview/{f}" for f in sorted(os.listdir("image_preview")) if f.endswith(".jpg")]
return img, seed, previews
examples = [
"a man walking in the forest",
"a viking ship sailing down a river",
"a woman resting by an open fire",
"a sword fight in a medieval village"
]
with gr.Blocks() as natalie_diffusion:
with gr.Row():
with gr.Column(scale=1, elem_id="left-column"):
gr.Markdown("""
# ХТОНЬ: Natalie LoRA Image Generator
Generate images in the surreal style of artist [Natalie Kav](https://www.behance.net/nataliKav), adapted using a custom LoRA on the FLUX.1 [dev] model.
> This space is designed for prototyping concept art for a forthcoming game called **ХТОНЬ**. All outputs are generated locally in the browser using GPU acceleration.
""")
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt...",
container=False,
)
run_button = gr.Button("🎨 Generate", scale=0)
with gr.Accordion("Advanced Settings", open=False):
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024)
height = gr.Slider(label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024)
with gr.Row():
guidance_scale = gr.Slider(label="Guidance Scale", minimum=1, maximum=15, step=0.1, value=3.5)
num_inference_steps = gr.Slider(label="Number of inference steps", minimum=1, maximum=50, step=1, value=28)
result_example = gr.Image(visible=False)
gr.Examples(
examples=examples,
fn=infer,
inputs=[prompt],
outputs=[result_example, seed, gr.Gallery(visible=False)],
cache_examples=True,
cache_mode="lazy"
)
with gr.Column(scale=1, elem_id="right-column"):
result = gr.Image(label="", show_label=False, elem_id="generated-image")
gr_state = gr.State([]) # internal list of previews
with gr.Column():
gr.Markdown("<h3 style='text-align:center;'>Generated Images Preview</h3>")
gallery = gr.Gallery(label="", columns=4, height="auto", object_fit="cover")
gr.on(
triggers=[run_button.click, prompt.submit],
fn=infer,
inputs=[prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
outputs=[result, seed, gallery],
)
if __name__ == "__main__":
natalie_diffusion.launch(css="style.css")
|