Spaces:
Runtime error
Runtime error
File size: 7,566 Bytes
400e97a 7d74ca3 400e97a 7cc5531 400e97a 5aa21de 7cc5531 5aa21de 400e97a 7d74ca3 7cc5531 400e97a 7cc5531 400e97a d046ba6 7cc5531 400e97a 7cc5531 7d74ca3 400e97a 7cc5531 400e97a 7d74ca3 400e97a 7d74ca3 7cc5531 400e97a 7cc5531 400e97a 7cc5531 e8d1b6b 7d74ca3 e8d1b6b 400e97a 7d74ca3 400e97a 7cc5531 400e97a 7cc5531 400e97a 7cc5531 e8d1b6b 7d74ca3 400e97a 7d74ca3 400e97a 7cc5531 400e97a 7cc5531 400e97a 7cc5531 400e97a 7cc5531 60684f0 7d74ca3 400e97a 7d74ca3 7cc5531 d046ba6 7d74ca3 400e97a 7cc5531 400e97a 7cc5531 400e97a 7cc5531 400e97a 7cc5531 400e97a 7cc5531 400e97a 7cc5531 400e97a 7cc5531 400e97a c8c37ed 7cc5531 400e97a 7cc5531 400e97a 7cc5531 400e97a 7cc5531 400e97a 60684f0 400e97a 60684f0 400e97a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 |
# agent.py – LangChain · LangGraph · Gemini Flash
# ================================================
"""
Abhängigkeiten (requirements.txt):
----------------------------------
langchain==0.1.*
langgraph
google-generativeai
tavily-python
wikipedia-api
pandas
openpyxl
tabulate
"""
import os, re, time, functools
from typing import Dict, Any, List
import pandas as pd
from langgraph.graph import StateGraph, START, END, MessagesState
from langgraph.prebuilt import ToolNode, tools_condition
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain_core.messages import SystemMessage, HumanMessage
from langchain_core.tools import tool
from langchain_community.tools.tavily_search import TavilySearchResults
from langchain_community.utilities.wikipedia import WikipediaAPIWrapper
from langchain.tools.python.tool import PythonAstREPLTool
# ---------------------------------------------------------------------
# 0) Optionale LangSmith-Tracing (setze ENV: LANGCHAIN_API_KEY)
# ---------------------------------------------------------------------
if os.getenv("LANGCHAIN_API_KEY"):
os.environ.setdefault("LANGCHAIN_TRACING_V2", "true")
from langchain_community.utils import configure_langsmith
configure_langsmith(project_name="gaia-agent")
# ---------------------------------------------------------------------
# 1) Helfer: Fehler-Decorator + Backoff-Wrapper
# ---------------------------------------------------------------------
def error_guard(fn):
"""Fängt Tool-Fehler ab & gibt String zurück (bricht Agent nicht ab)."""
@functools.wraps(fn)
def wrapper(*args, **kw):
try:
return fn(*args, **kw)
except Exception as e:
return f"ERROR: {e}"
return wrapper
def with_backoff(fn, tries: int = 4, delay: int = 4):
"""Synchrones Retry-Wrapper für LLM-Aufrufe."""
for t in range(tries):
try:
return fn()
except Exception as e:
if ("429" in str(e) or "RateLimit" in str(e)) and t < tries - 1:
time.sleep(delay)
delay *= 2
continue
raise
# ---------------------------------------------------------------------
# 2) Eigene Tools (CSV / Excel)
# ---------------------------------------------------------------------
@tool
@error_guard
def parse_csv(file_path: str, query: str = "") -> str:
"""Load a CSV file and (optional) run a pandas query."""
df = pd.read_csv(file_path)
if not query:
return f"Rows={len(df)}, Cols={list(df.columns)}"
try:
return df.query(query).to_markdown(index=False)
except Exception as e:
return f"ERROR query: {e}"
@tool
@error_guard
def parse_excel(file_path: str, sheet: str | int | None = None, query: str = "") -> str:
"""Load an Excel sheet (name or index) and (optional) run a pandas query."""
sheet_arg = int(sheet) if isinstance(sheet, str) and sheet.isdigit() else sheet or 0
df = pd.read_excel(file_path, sheet_name=sheet_arg)
if not query:
return f"Rows={len(df)}, Cols={list(df.columns)}"
try:
return df.query(query).to_markdown(index=False)
except Exception as e:
return f"ERROR query: {e}"
# ---------------------------------------------------------------------
# 3) Externe Search-Tools (Tavily, Wikipedia)
# ---------------------------------------------------------------------
@tool
@error_guard
def web_search(query: str, max_results: int = 5) -> str:
"""Search the web via Tavily and return markdown list of results."""
api_key = os.getenv("TAVILY_API_KEY")
hits = TavilySearchResults(max_results=max_results, api_key=api_key).invoke(query)
if not hits:
return "No results."
return "\n".join(f"{h['title']} – {h['url']}" for h in hits)
@tool
@error_guard
def wiki_search(query: str, sentences: int = 3) -> str:
"""Quick Wikipedia summary."""
wrapper = WikipediaAPIWrapper(top_k_results=1, doc_content_chars_max=4000)
res = wrapper.run(query)
return "\n".join(res.split(". ")[:sentences]) if res else "No article found."
# ---------------------------------------------------------------------
# 4) Python-REPL Tool (fertig aus LangChain)
# ---------------------------------------------------------------------
python_repl = PythonAstREPLTool()
# ---------------------------------------------------------------------
# 5) LLM – Gemini Flash, an Tools gebunden
# ---------------------------------------------------------------------
gemini_llm = ChatGoogleGenerativeAI(
google_api_key=os.getenv("GOOGLE_API_KEY"),
model="gemini-2.0-flash",
temperature=0,
max_output_tokens=2048,
).bind_tools(
[web_search, wiki_search, parse_csv, parse_excel, python_repl],
return_named_tools=True,
)
# ---------------------------------------------------------------------
# 6) System-Prompt (ReAct, keine Prefixe im Final-Output!)
# ---------------------------------------------------------------------
SYSTEM_PROMPT = SystemMessage(
content=(
"You are a helpful assistant with access to Python tools.\n"
"• Think step by step.\n"
"• Call a tool when needed – reply in this JSON format:\n"
" {\"tool\": \"<tool_name>\", \"tool_input\": { ... }}\n"
"• When you have the answer, reply with the answer **only** "
"– no prefix, no explanations.\n"
"Answer format rules:\n"
" • Single number → no separators / units unless required.\n"
" • Single string → no articles/abbrev.\n"
" • List → comma + single space separated, keep required order.\n"
)
)
# ---------------------------------------------------------------------
# 7) LangGraph – Planner + Tools + Router
# ---------------------------------------------------------------------
def planner(state: MessagesState):
"""LLM-Planner – entscheidet, ob Tool nötig oder Final Answer erreicht."""
msgs = state["messages"]
if msgs[0].type != "system":
msgs = [SYSTEM_PROMPT] + msgs
resp = with_backoff(lambda: gemini_llm.invoke(msgs))
finished = (
not getattr(resp, "tool_calls", None) # keine Toolaufrufe
and "\n" not in resp.content # heuristik: kurze Endantwort
)
return {"messages": [resp], "should_end": finished}
def route(state):
return "END" if state["should_end"] else "tools"
# Tool-Knoten
TOOLS = [web_search, wiki_search, parse_csv, parse_excel, python_repl]
graph = StateGraph(MessagesState)
graph.add_node("planner", planner)
graph.add_node("tools", ToolNode(TOOLS))
graph.add_edge(START, "planner")
graph.add_conditional_edges("planner", route, {"tools": "tools", "END": END})
# compile → LangGraph-Executor
agent_executor = graph.compile(max_iterations=8)
# ---------------------------------------------------------------------
# 8) Öffentliche Klasse – wird von app.py / logic.py verwendet
# ---------------------------------------------------------------------
class GaiaAgent:
"""LangChain·LangGraph-Agent für GAIA Level 1."""
def __init__(self):
print("✅ GaiaAgent initialised (LangGraph)")
def __call__(self, task_id: str, question: str) -> str:
"""Run the agent on a single GAIA question → exact answer string."""
start_state = {"messages": [HumanMessage(content=question)]}
final_state = agent_executor.invoke(start_state)
# letze Message enthält Antwort
answer = final_state["messages"][-1].content
return answer.strip() |