Spaces:
Runtime error
Runtime error
Update agent.py
Browse files
agent.py
CHANGED
@@ -1,291 +1,195 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
from
|
9 |
-
|
10 |
-
import
|
11 |
-
import
|
12 |
-
|
13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
GOOGLE_API_KEY = os.getenv("GOOGLE_API_KEY")
|
15 |
|
16 |
-
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
@tool
|
|
|
21 |
def fetch_gaia_file(task_id: str) -> str:
|
22 |
-
"""
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
try:
|
32 |
-
url = f"{GAIA_BASE_URL}/files/{task_id}"
|
33 |
-
response = requests.get(url, timeout=20)
|
34 |
-
response.raise_for_status()
|
35 |
-
|
36 |
-
# Server liefert den echten Dateinamen im Header – fallback auf "download"
|
37 |
-
filename = (
|
38 |
-
response.headers.get("x-filename") or
|
39 |
-
response.headers.get("content-disposition", "download").split("filename=")[-1].strip('"')
|
40 |
-
)
|
41 |
-
if not filename:
|
42 |
-
filename = f"{task_id}.bin"
|
43 |
-
|
44 |
-
tmp_path = os.path.join(tempfile.gettempdir(), filename)
|
45 |
-
with open(tmp_path, "wb") as f:
|
46 |
-
f.write(response.content)
|
47 |
-
|
48 |
-
return tmp_path
|
49 |
-
except Exception as e:
|
50 |
-
return f"ERROR: could not download file for task {task_id}: {e}"
|
51 |
|
52 |
@tool
|
|
|
53 |
def parse_csv(file_path: str, query: str = "") -> str:
|
54 |
-
"""
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
"sum of column Sales where Category != 'Drinks'"
|
61 |
-
|
62 |
-
Returns:
|
63 |
-
A concise string with the answer OR a preview of the dataframe
|
64 |
-
if no query given.
|
65 |
-
"""
|
66 |
-
try:
|
67 |
-
df = pd.read_csv(file_path)
|
68 |
-
|
69 |
-
# Auto-preview if kein query
|
70 |
-
if not query:
|
71 |
-
preview = df.head(5).to_markdown(index=False)
|
72 |
-
return f"CSV loaded. First rows:\n\n{preview}\n\nColumns: {', '.join(df.columns)}"
|
73 |
-
|
74 |
-
# Mini-query-engine (sehr simpel, reicht für Summen / Mittelwerte)
|
75 |
-
query_lc = query.lower()
|
76 |
-
if "sum" in query_lc:
|
77 |
-
# ermitteln, welche Spalte summiert werden soll
|
78 |
-
for col in df.columns:
|
79 |
-
if col.lower() in query_lc:
|
80 |
-
s = df[col]
|
81 |
-
if "where" in query_lc:
|
82 |
-
# naive Filter-Parsing: where <col> != 'Drinks'
|
83 |
-
cond_part = query_lc.split("where", 1)[1].strip()
|
84 |
-
# SEHR einfaches != oder == Parsing
|
85 |
-
if "!=" in cond_part:
|
86 |
-
key, val = [x.strip().strip("'\"") for x in cond_part.split("!=")]
|
87 |
-
s = df.loc[df[key] != val, col]
|
88 |
-
elif "==" in cond_part:
|
89 |
-
key, val = [x.strip().strip("'\"") for x in cond_part.split("==")]
|
90 |
-
s = df.loc[df[key] == val, col]
|
91 |
-
return str(round(s.sum(), 2))
|
92 |
-
# Fallback
|
93 |
-
return "Query type not supported by parse_csv."
|
94 |
-
except Exception as e:
|
95 |
-
return f"ERROR parsing CSV: {e}"
|
96 |
|
97 |
@tool
|
|
|
98 |
def parse_excel(file_path: str, query: str = "") -> str:
|
99 |
-
"""
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
df
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
query_lc = query.lower()
|
110 |
-
if "sum" in query_lc:
|
111 |
-
for col in df.columns:
|
112 |
-
if col.lower() in query_lc:
|
113 |
-
s = df[col]
|
114 |
-
if "where" in query_lc:
|
115 |
-
cond_part = query_lc.split("where", 1)[1].strip()
|
116 |
-
if "!=" in cond_part:
|
117 |
-
key, val = [x.strip().strip("'\"") for x in cond_part.split("!=")]
|
118 |
-
s = df.loc[df[key] != val, col]
|
119 |
-
elif "==" in cond_part:
|
120 |
-
key, val = [x.strip().strip("'\"") for x in cond_part.split("==")]
|
121 |
-
s = df.loc[df[key] == val, col]
|
122 |
-
return str(round(s.sum(), 2))
|
123 |
-
return "Query type not supported by parse_excel."
|
124 |
-
except Exception as e:
|
125 |
-
return f"ERROR parsing Excel: {e}"
|
126 |
-
|
127 |
-
@tool
|
128 |
-
def transcribe_audio(file_path: str, language: str = "en") -> str:
|
129 |
-
"""
|
130 |
-
Transcribe an audio file (MP3/WAV/etc.) using Faster-Whisper.
|
131 |
-
|
132 |
-
Args:
|
133 |
-
file_path: absolute path to an audio file (from fetch_gaia_file)
|
134 |
-
language: ISO language code, default "en"
|
135 |
-
|
136 |
-
Returns:
|
137 |
-
Full transcription as plain text, or "ERROR …"
|
138 |
-
"""
|
139 |
-
try:
|
140 |
-
from faster_whisper import WhisperModel
|
141 |
-
|
142 |
-
# Tiny model reicht für kurze Sprachmemos, ~75 MB
|
143 |
-
model = WhisperModel("tiny", device="cpu", compute_type="int8")
|
144 |
-
|
145 |
-
segments, _ = model.transcribe(file_path, language=language)
|
146 |
-
transcript = " ".join(segment.text.strip() for segment in segments).strip()
|
147 |
-
|
148 |
-
if not transcript:
|
149 |
-
return "ERROR: transcription empty."
|
150 |
-
return transcript
|
151 |
-
except Exception as e:
|
152 |
-
return f"ERROR: audio transcription failed – {e}"
|
153 |
-
|
154 |
-
|
155 |
@tool
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
if
|
161 |
-
return
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
|
171 |
@tool
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
177 |
@tool
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
183 |
@tool
|
|
|
184 |
def web_search(query: str) -> str:
|
185 |
-
"""
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
"- parse_excel(file_path, query): analyse Excel files.\n"
|
206 |
-
"- transcribe_audio(file_path): transcribe MP3 / WAV audio.\n"
|
207 |
-
"- wiki_search(query): query English Wikipedia.\n"
|
208 |
-
"- arxiv_search(query): query arXiv.\n"
|
209 |
-
"- web_search(query): DuckDuckGo web search.\n"
|
210 |
-
"- simple_calculator(operation,a,b): basic maths.\n"
|
211 |
-
"\n"
|
212 |
-
"WHEN TO USE WHICH TOOL\n"
|
213 |
-
"----------------------\n"
|
214 |
-
"・If the prompt or GAIA metadata mentions an *attached* file, FIRST call "
|
215 |
-
"fetch_gaia_file with the given task_id. Then:\n"
|
216 |
-
" • CSV → parse_csv\n"
|
217 |
-
" • XLS/XLSX → parse_excel\n"
|
218 |
-
" • MP3/WAV → transcribe_audio (language auto-detect is OK)\n"
|
219 |
-
" • Image → (currently unsupported) answer that image processing is unavailable\n"
|
220 |
-
"・If you need factual data (dates, numbers, names) → wiki_search or web_search.\n"
|
221 |
-
"・If you need a scientific paper → arxiv_search.\n"
|
222 |
-
"・If a numeric operation is required → simple_calculator.\n"
|
223 |
-
"\n"
|
224 |
-
"ERROR HANDLING\n"
|
225 |
-
"--------------\n"
|
226 |
-
"If a tool call returns a string that starts with \"ERROR:\", IMMEDIATELY think of "
|
227 |
-
"an alternative strategy: retry with a different tool or modified parameters. "
|
228 |
-
"Do not repeat the same failing call twice.\n"
|
229 |
-
"\n"
|
230 |
-
"OUTPUT FORMAT\n"
|
231 |
-
"-------------\n"
|
232 |
-
"Follow the exact format asked in the question (e.g. single word, CSV, comma-list). "
|
233 |
-
"Do not add extra commentary.\n"
|
234 |
-
)
|
235 |
-
)
|
236 |
-
|
237 |
-
# === LLM definieren ===
|
238 |
-
llm = ChatGoogleGenerativeAI(
|
239 |
-
model="gemini-2.0-flash",
|
240 |
-
google_api_key=GOOGLE_API_KEY,
|
241 |
-
temperature=0,
|
242 |
-
max_output_tokens=2048
|
243 |
-
)
|
244 |
-
|
245 |
-
# === Tools in LLM einbinden ===
|
246 |
tools = [
|
247 |
fetch_gaia_file,
|
248 |
parse_csv,
|
249 |
parse_excel,
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
web_search,
|
254 |
simple_calculator,
|
255 |
]
|
|
|
256 |
llm_with_tools = llm.bind_tools(tools)
|
257 |
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
content = result.content if hasattr(result, "content") else ""
|
268 |
-
if "ERROR:" not in content:
|
269 |
-
return result
|
270 |
-
# Fehler: füge eine System-Korrektur hinzu und versuche erneut
|
271 |
-
messages.append(
|
272 |
-
SystemMessage(
|
273 |
-
content="Previous tool call returned an ERROR. "
|
274 |
-
"Try a different tool or revise the input."
|
275 |
-
)
|
276 |
)
|
277 |
-
|
278 |
-
return result
|
279 |
|
280 |
|
281 |
-
# === Nodes für LangGraph ===
|
282 |
def assistant(state: MessagesState):
|
283 |
msgs = state["messages"]
|
284 |
if not msgs or msgs[0].type != "system":
|
285 |
msgs = [system_prompt] + msgs
|
286 |
-
return {"messages": [
|
287 |
|
288 |
-
#
|
|
|
|
|
289 |
builder = StateGraph(MessagesState)
|
290 |
builder.add_node("assistant", assistant)
|
291 |
builder.add_node("tools", ToolNode(tools))
|
@@ -293,5 +197,4 @@ builder.add_edge(START, "assistant")
|
|
293 |
builder.add_conditional_edges("assistant", tools_condition)
|
294 |
builder.add_edge("tools", "assistant")
|
295 |
|
296 |
-
# === Agent Executor ===
|
297 |
agent_executor = builder.compile()
|
|
|
1 |
+
"""
|
2 |
+
agent.py – LangGraph-Agent mit
|
3 |
+
• Gemini 2.0 Flash
|
4 |
+
• Datei-Tools (CSV, Excel, Audio, Bild-Describe, OCR)
|
5 |
+
• Fehler-Retry-Logik
|
6 |
+
"""
|
7 |
+
import os, base64, mimetypes, subprocess, json, tempfile
|
8 |
+
from typing import Any
|
9 |
+
|
10 |
+
from langgraph.graph import START, StateGraph, MessagesState
|
11 |
+
from langgraph.prebuilt import tools_condition, ToolNode
|
12 |
+
from langchain_core.tools import tool
|
13 |
+
from langchain_core.messages import SystemMessage, HumanMessage
|
14 |
+
from langchain_google_genai import ChatGoogleGenerativeAI
|
15 |
+
from langchain_community.tools.duckduckgo_search import DuckDuckGoSearchResults as DDGS
|
16 |
+
|
17 |
+
# ----------------------------------------------------------------------
|
18 |
+
# 1 ── ENV / LLM
|
19 |
+
# ----------------------------------------------------------------------
|
20 |
GOOGLE_API_KEY = os.getenv("GOOGLE_API_KEY")
|
21 |
|
22 |
+
llm = ChatGoogleGenerativeAI(
|
23 |
+
model="gemini-2.0-flash",
|
24 |
+
google_api_key=GOOGLE_API_KEY,
|
25 |
+
temperature=0,
|
26 |
+
max_output_tokens=2048,
|
27 |
+
)
|
28 |
|
29 |
+
# ----------------------------------------------------------------------
|
30 |
+
# 2 ── ERROR-WRAPPER (garantiert "ERROR:"-String statt Exception)
|
31 |
+
# ----------------------------------------------------------------------
|
32 |
+
def error_guard(fn):
|
33 |
+
def wrapper(*args, **kwargs):
|
34 |
+
try:
|
35 |
+
return fn(*args, **kwargs)
|
36 |
+
except Exception as e:
|
37 |
+
return f"ERROR: {e}"
|
38 |
+
return wrapper
|
39 |
+
|
40 |
+
# ----------------------------------------------------------------------
|
41 |
+
# 3 ── BASIS-TOOLS
|
42 |
+
# ----------------------------------------------------------------------
|
43 |
+
@tool
|
44 |
+
@error_guard
|
45 |
+
def simple_calculator(operation: str, a: float, b: float) -> float:
|
46 |
+
"""Basic maths: add, subtract, multiply, divide."""
|
47 |
+
ops = {"add": a + b, "subtract": a - b, "multiply": a * b,
|
48 |
+
"divide": a / b if b else float("inf")}
|
49 |
+
return ops.get(operation, "ERROR: unknown operation")
|
50 |
|
51 |
@tool
|
52 |
+
@error_guard
|
53 |
def fetch_gaia_file(task_id: str) -> str:
|
54 |
+
"""Download attachment for current GAIA task_id; returns local file path."""
|
55 |
+
import requests, pathlib, uuid
|
56 |
+
url = f"https://agents-course-unit4-scoring.hf.space/file/{task_id}"
|
57 |
+
r = requests.get(url, timeout=15)
|
58 |
+
r.raise_for_status()
|
59 |
+
suffix = pathlib.Path(url).suffix or ""
|
60 |
+
fp = pathlib.Path(tempfile.gettempdir())/f"{uuid.uuid4().hex}{suffix}"
|
61 |
+
fp.write_bytes(r.content)
|
62 |
+
return str(fp)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
|
64 |
@tool
|
65 |
+
@error_guard
|
66 |
def parse_csv(file_path: str, query: str = "") -> str:
|
67 |
+
"""Load CSV & answer query using pandas.eval."""
|
68 |
+
import pandas as pd
|
69 |
+
df = pd.read_csv(file_path)
|
70 |
+
if not query:
|
71 |
+
return df.head().to_markdown()
|
72 |
+
return str(pd.eval(query, local_dict={"df": df}))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
|
74 |
@tool
|
75 |
+
@error_guard
|
76 |
def parse_excel(file_path: str, query: str = "") -> str:
|
77 |
+
"""Load first sheet of Excel & answer query using pandas.eval."""
|
78 |
+
import pandas as pd
|
79 |
+
df = pd.read_excel(file_path)
|
80 |
+
if not query:
|
81 |
+
return df.head().to_markdown()
|
82 |
+
return str(pd.eval(query, local_dict={"df": df}))
|
83 |
+
|
84 |
+
# ----------------------------------------------------------------------
|
85 |
+
# 4 ── GEMINI MULTIMODAL-TOOLS
|
86 |
+
# ----------------------------------------------------------------------
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
87 |
@tool
|
88 |
+
@error_guard
|
89 |
+
def describe_image(file_path: str, prompt: str = "Describe the image.") -> str:
|
90 |
+
"""Send a local image (base64) to Gemini Vision and return description."""
|
91 |
+
mime, _ = mimetypes.guess_type(file_path)
|
92 |
+
if not (mime and mime.startswith("image/")):
|
93 |
+
return "ERROR: not an image."
|
94 |
+
with open(file_path, "rb") as f:
|
95 |
+
b64 = base64.b64encode(f.read()).decode()
|
96 |
+
content = [
|
97 |
+
{"type": "text", "text": prompt},
|
98 |
+
{"type": "image_url", "image_url": f"data:{mime};base64,{b64}"},
|
99 |
+
]
|
100 |
+
resp = llm.invoke([HumanMessage(content=content)])
|
101 |
+
return resp.content
|
102 |
|
103 |
@tool
|
104 |
+
@error_guard
|
105 |
+
def gemini_transcribe_audio(file_path: str,
|
106 |
+
prompt: str = "Transcribe the audio.") -> str:
|
107 |
+
"""Transcribe audio via Gemini multimodal."""
|
108 |
+
mime, _ = mimetypes.guess_type(file_path)
|
109 |
+
if not (mime and mime.startswith("audio/")):
|
110 |
+
return "ERROR: not audio."
|
111 |
+
with open(file_path, "rb") as f:
|
112 |
+
b64 = base64.b64encode(f.read()).decode()
|
113 |
+
content = [
|
114 |
+
{"type": "text", "text": prompt},
|
115 |
+
{"type": "media", "data": b64, "mime_type": mime},
|
116 |
+
]
|
117 |
+
resp = llm.invoke([HumanMessage(content=content)])
|
118 |
+
return resp.content
|
119 |
+
|
120 |
+
# ----------------------------------------------------------------------
|
121 |
+
# 5 ── OFFLINE OCR-TOOL (pytesseract)
|
122 |
+
# ----------------------------------------------------------------------
|
123 |
@tool
|
124 |
+
@error_guard
|
125 |
+
def ocr_image(file_path: str, lang: str = "eng") -> str:
|
126 |
+
"""Extract text from image using pytesseract."""
|
127 |
+
from PIL import Image
|
128 |
+
import pytesseract
|
129 |
+
img = Image.open(file_path)
|
130 |
+
return pytesseract.image_to_string(img, lang=lang).strip()
|
131 |
+
|
132 |
+
# ----------------------------------------------------------------------
|
133 |
+
# 6 ── WEB / WIKI SEARCH
|
134 |
+
# ----------------------------------------------------------------------
|
135 |
@tool
|
136 |
+
@error_guard
|
137 |
def web_search(query: str) -> str:
|
138 |
+
"""DuckDuckGo text search – top 5 results."""
|
139 |
+
with DDGS() as ddgs:
|
140 |
+
results = ddgs.text(query, max_results=5)
|
141 |
+
if not results:
|
142 |
+
return "ERROR: no results."
|
143 |
+
return "\n\n".join(f"{r['title']} – {r['href']}" for r in results)
|
144 |
+
|
145 |
+
# ----------------------------------------------------------------------
|
146 |
+
# 7 ── SYSTEM-PROMPT
|
147 |
+
# ----------------------------------------------------------------------
|
148 |
+
system_prompt = SystemMessage(content=(
|
149 |
+
"You are a precise GAIA challenge agent.\n"
|
150 |
+
"Always attempt a TOOL call before giving up. "
|
151 |
+
"If a tool returns 'ERROR', think of an alternative tool or parameters.\n"
|
152 |
+
"Use fetch_gaia_file(task_id) for any attachment."
|
153 |
+
))
|
154 |
+
|
155 |
+
# ----------------------------------------------------------------------
|
156 |
+
# 8 ── LangGraph Nodes
|
157 |
+
# ----------------------------------------------------------------------
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
158 |
tools = [
|
159 |
fetch_gaia_file,
|
160 |
parse_csv,
|
161 |
parse_excel,
|
162 |
+
gemini_transcribe_audio,
|
163 |
+
ocr_image,
|
164 |
+
describe_image,
|
165 |
web_search,
|
166 |
simple_calculator,
|
167 |
]
|
168 |
+
|
169 |
llm_with_tools = llm.bind_tools(tools)
|
170 |
|
171 |
+
|
172 |
+
def safe_llm_invoke(msgs):
|
173 |
+
for attempt in range(2):
|
174 |
+
resp = llm_with_tools.invoke(msgs)
|
175 |
+
content = resp.content or ""
|
176 |
+
if not content.startswith("ERROR"):
|
177 |
+
return resp
|
178 |
+
msgs.append(
|
179 |
+
SystemMessage(content="Previous tool call returned ERROR. Try another approach.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
180 |
)
|
181 |
+
return resp
|
|
|
182 |
|
183 |
|
|
|
184 |
def assistant(state: MessagesState):
|
185 |
msgs = state["messages"]
|
186 |
if not msgs or msgs[0].type != "system":
|
187 |
msgs = [system_prompt] + msgs
|
188 |
+
return {"messages": [safe_llm_invoke(msgs)]}
|
189 |
|
190 |
+
# ----------------------------------------------------------------------
|
191 |
+
# 9 ── Graph
|
192 |
+
# ----------------------------------------------------------------------
|
193 |
builder = StateGraph(MessagesState)
|
194 |
builder.add_node("assistant", assistant)
|
195 |
builder.add_node("tools", ToolNode(tools))
|
|
|
197 |
builder.add_conditional_edges("assistant", tools_condition)
|
198 |
builder.add_edge("tools", "assistant")
|
199 |
|
|
|
200 |
agent_executor = builder.compile()
|