Spaces:
Runtime error
Runtime error
File size: 5,243 Bytes
a92112f 10e9b7d eccf8e4 3c4371f a92112f 10e9b7d d59f015 3db6293 e80aab9 a92112f 31243f4 1f251f4 ce13199 a92112f ff70a29 a92112f ff70a29 57e6671 a92112f 3c4371f 7e4a06b a92112f 3c4371f 7e4a06b 3c4371f 7d65c66 3c4371f a92112f 31243f4 a92112f e80aab9 a92112f 31243f4 a92112f 36ed51a c1fd3d2 3c4371f a92112f eccf8e4 31243f4 7d65c66 31243f4 a92112f 31243f4 7d65c66 a92112f e80aab9 a92112f 31243f4 a92112f 31243f4 a92112f 31243f4 a92112f 31243f4 a92112f 31243f4 a92112f e80aab9 7d65c66 e80aab9 31243f4 e80aab9 3c4371f a92112f 3c4371f e80aab9 a92112f 7d65c66 a92112f e80aab9 a92112f e80aab9 31243f4 e80aab9 7e4a06b 31243f4 e80aab9 a92112f 7d65c66 e80aab9 a92112f e80aab9 3c4371f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 |
# app.py – vollständige, lauffähige Fassung
# -------------------------------------------
import os
import gradio as gr
import requests
import pandas as pd
from agent import agent_executor # dein LangGraph-Agent
from langchain_core.messages import HumanMessage # NEU: benötigt für llm_input
# (Keep Constants as is)
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
# ---------------------------------------------------------------------------
# BasicAgent-Wrapper: ruft den LangGraph-Executor auf
# ---------------------------------------------------------------------------
class BasicAgent:
def __init__(self):
print("LLM Tool-Enhanced Agent initialized.")
# nimmt jetzt ein Dict (messages + task_id) entgegen
def __call__(self, llm_input: dict) -> str:
try:
result = agent_executor.invoke(llm_input) # LangGraph ausführen
answer = result["messages"][-1].content
return answer.strip()
except Exception as e:
print(f"Agent error: {e}")
return "I don't know."
# ---------------------------------------------------------------------------
# GAIA-Runner: Fragen holen → Agent laufen lassen → Ergebnis submitten
# ---------------------------------------------------------------------------
def run_and_submit_all(profile: gr.OAuthProfile | None):
"""Fetch GAIA questions, run agent, submit answers."""
space_id = os.getenv("SPACE_ID")
if profile:
username = f"{profile.username}"
print(f"User logged in: {username}")
else:
print("User not logged in.")
return "Please Login to Hugging Face with the button.", None
api_url = DEFAULT_API_URL
questions_url = f"{api_url}/questions"
submit_url = f"{api_url}/submit"
# Agent instanziieren
try:
agent = BasicAgent()
except Exception as e:
return f"Error initializing agent: {e}", None
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
print(agent_code)
# Fragen holen
try:
response = requests.get(questions_url, timeout=15)
response.raise_for_status()
questions_data = response.json()
if not questions_data:
return "Fetched questions list is empty or invalid format.", None
print(f"Fetched {len(questions_data)} questions.")
except Exception as e:
return f"Error fetching questions: {e}", None
# Agent auf jede Frage anwenden
results_log, answers_payload = [], []
for item in questions_data:
task_id = item.get("task_id")
question_text = item.get("question")
if not task_id or question_text is None:
continue
try:
llm_input = {
"messages": [HumanMessage(content=question_text)],
"task_id": task_id, # ← WICHTIG!
}
submitted_answer = agent(llm_input)
answers_payload.append(
{"task_id": task_id, "submitted_answer": submitted_answer}
)
results_log.append(
{"Task ID": task_id, "Question": question_text,
"Submitted Answer": submitted_answer}
)
except Exception as e:
results_log.append(
{"Task ID": task_id, "Question": question_text,
"Submitted Answer": f"AGENT ERROR: {e}"}
)
if not answers_payload:
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
# Submission
submission_data = {
"username": username.strip(),
"agent_code": agent_code,
"answers": answers_payload,
}
try:
response = requests.post(submit_url, json=submission_data, timeout=60)
response.raise_for_status()
result_data = response.json()
final_status = (
f"Submission Successful!\n"
f"User: {result_data.get('username')}\n"
f"Overall Score: {result_data.get('score', 'N/A')}% "
f"({result_data.get('correct_count', '?')}/"
f"{result_data.get('total_attempted', '?')} correct)\n"
f"Message: {result_data.get('message', 'No message received.')}"
)
return final_status, pd.DataFrame(results_log)
except Exception as e:
status_message = f"Submission Failed: {e}"
return status_message, pd.DataFrame(results_log)
# ---------------------------------------------------------------------------
# Gradio-UI (unverändert)
# ---------------------------------------------------------------------------
with gr.Blocks() as demo:
gr.Markdown("# Basic Agent Evaluation Runner")
gr.LoginButton()
run_button = gr.Button("Run Evaluation & Submit All Answers")
status_output = gr.Textbox(label="Run Status / Submission Result",
lines=5, interactive=False)
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
run_button.click(fn=run_and_submit_all,
outputs=[status_output, results_table])
if __name__ == "__main__":
demo.launch(debug=True, share=False) |