ZeroTimo's picture
Update agent.py
257cce5 verified
raw
history blame
3.1 kB
import os
from langgraph.graph import StateGraph, START, MessagesState
from langgraph.prebuilt import tools_condition, ToolNode
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain_core.tools import tool
from langchain_community.document_loaders import WikipediaLoader, ArxivLoader
from langchain_community.utilities.duckduckgo_search import DuckDuckGoSearchAPIWrapper
from langchain_core.messages import SystemMessage, HumanMessage
# Lade Umgebungsvariablen (Google API Key)
GOOGLE_API_KEY = os.getenv("GOOGLE_API_KEY")
# === Tools definieren ===
@tool
def multiply(a: int, b: int) -> int:
"""Multiplies two numbers."""
return a * b
@tool
def add(a: int, b: int) -> int:
"""Adds two numbers."""
return a + b
@tool
def subtract(a: int, b: int) -> int:
"""Subtracts two numbers."""
return a - b
@tool
def divide(a: int, b: int) -> float:
"""Divides two numbers."""
if b == 0:
raise ValueError("Cannot divide by zero.")
return a / b
@tool
def modulo(a: int, b: int) -> int:
"""Returns the remainder of dividing two numbers."""
return a % b
@tool
def wiki_search(query: str) -> str:
"""Search Wikipedia for a query and return the result."""
search_docs = WikipediaLoader(query=query, load_max_docs=2).load()
return "\n\n".join(doc.page_content for doc in search_docs)
@tool
def arxiv_search(query: str) -> str:
"""Search Arxiv for academic papers about a query."""
search_docs = ArxivLoader(query=query, load_max_docs=3).load()
return "\n\n".join(doc.page_content[:1000] for doc in search_docs)
@tool
def web_search(query: str) -> str:
"""Perform a DuckDuckGo web search."""
wrapper = DuckDuckGoSearchAPIWrapper(max_results=5)
results = wrapper.run(query)
return results
# === System Prompt definieren ===
system_prompt = SystemMessage(content=(
"You are an expert assistant. You MUST answer precisely, factually, and accurately. "
"If you do not know the answer, use the available tools such as Wikipedia Search, Arxiv Search, "
"or Web Search to find the correct information. "
"If a math operation is needed, use the calculation tools. "
"Do NOT invent answers. Only return answers you are confident in."
))
# === LLM definieren ===
llm = ChatGoogleGenerativeAI(
model="gemini-2.0-flash",
google_api_key=GOOGLE_API_KEY,
temperature=0,
max_output_tokens=2048,
system_message=system_prompt,
)
# === Tools in LLM einbinden ===
tools = [multiply, add, subtract, divide, modulo, wiki_search, arxiv_search, web_search]
llm_with_tools = llm.bind_tools(tools)
# === Nodes für LangGraph ===
def assistant(state: MessagesState):
return {"messages": [llm_with_tools.invoke(state["messages"])]}
# === LangGraph bauen ===
builder = StateGraph(MessagesState)
builder.add_node("assistant", assistant)
builder.add_node("tools", ToolNode(tools))
builder.add_edge(START, "assistant")
builder.add_conditional_edges("assistant", tools_condition)
builder.add_edge("tools", "assistant")
# === Agent Executor ===
agent_executor = builder.compile()