Spaces:
Runtime error
Runtime error
import os | |
from dotenv import load_dotenv | |
from langgraph.graph import START, StateGraph, MessagesState | |
from langgraph.prebuilt import tools_condition | |
from langgraph.prebuilt import ToolNode | |
from duckduckgo_search import DDGS | |
from langchain_community.document_loaders import WikipediaLoader | |
from langchain_community.document_loaders import ArxivLoader | |
from langchain_core.messages import SystemMessage, HumanMessage | |
from langchain_core.tools import tool | |
from langchain_google_genai import ChatGoogleGenerativeAI | |
load_dotenv() | |
GOOGLE_API_KEY = os.getenv("GOOGLE_API_KEY") | |
# --- Tools --- | |
def multiply(a: int, b: int) -> int: | |
"""Multiplies two integers and returns the result.""" | |
return a * b | |
def add(a: int, b: int) -> int: | |
"""Adds two integers and returns the result.""" | |
return a + b | |
def subtract(a: int, b: int) -> int: | |
"""Subtracts the second integer from the first.""" | |
return a - b | |
def divide(a: int, b: int) -> float: | |
"""Divides the first integer by the second, returns float.""" | |
if b == 0: | |
raise ValueError("Cannot divide by zero.") | |
return a / b | |
def modulo(a: int, b: int) -> int: | |
"""Returns the remainder of the division of two integers.""" | |
return a % b | |
def wiki_search(query: str) -> str: | |
"""Search Wikipedia for a given query and return up to 2 results formatted.""" | |
search_docs = WikipediaLoader(query=query, load_max_docs=2).load() | |
formatted = "\n\n---\n\n".join( | |
[f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}">\n{doc.page_content}\n</Document>' for doc in search_docs] | |
) | |
return {"wiki_results": formatted} | |
def arxiv_search(query: str) -> str: | |
"""Search Arxiv for a given query and return up to 3 results formatted.""" | |
search_docs = ArxivLoader(query=query, load_max_docs=3).load() | |
formatted = "\n\n---\n\n".join( | |
[f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}">\n{doc.page_content[:1000]}\n</Document>' for doc in search_docs] | |
) | |
return {"arxiv_results": formatted} | |
def web_search(query: str) -> str: | |
"""Search DuckDuckGo (for websearch) for a query and return up to 5 links.""" | |
with DDGS() as ddgs: | |
results = ddgs.text(query, max_results=5) | |
if not results: | |
return "No results found." | |
return "\n\n".join(f"{r['title']}: {r['href']}" for r in results) | |
# --- Setup LLM und Tools --- | |
tools = [ | |
multiply, | |
add, | |
subtract, | |
divide, | |
modulo, | |
wiki_search, | |
arxiv_search, | |
web_search, | |
] | |
system_prompt = ( | |
"You are a highly accurate AI assistant. " | |
"Use tools when needed. Be very concise and precise. " | |
"Do not hallucinate information." | |
) | |
sys_msg = SystemMessage(content=system_prompt) | |
def build_graph(): | |
llm = ChatGoogleGenerativeAI( | |
model="gemini-2.0-flash", | |
google_api_key=GOOGLE_API_KEY, | |
temperature=0, | |
max_output_tokens=2048, | |
system_message=sys_msg, | |
) | |
llm_with_tools = llm.bind_tools(tools) | |
def assistant(state: MessagesState): | |
return {"messages": [llm_with_tools.invoke(state["messages"])]} | |
builder = StateGraph(MessagesState) | |
builder.add_node("assistant", assistant) | |
builder.add_node("tools", ToolNode(tools)) | |
builder.add_edge(START, "assistant") | |
builder.add_conditional_edges("assistant", tools_condition) | |
builder.add_edge("tools", "assistant") | |
return builder.compile() | |
# Agent Executor für app.py | |
def agent_executor(question: str) -> str: | |
graph = build_graph() | |
messages = [HumanMessage(content=question)] | |
result = graph.invoke({"messages": messages}) | |
return result["messages"][-1].content |