Spaces:
Runtime error
Runtime error
from typing import Dict, List, Tuple | |
import re | |
import tempfile | |
from pathlib import Path | |
import pandas as pd | |
import requests | |
from agent import GaiaAgent | |
from pandas import DataFrame | |
# --- Constants --- | |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space" | |
QUESTIONS_URL = f"{DEFAULT_API_URL}/questions" | |
SUBMIT_URL = f"{DEFAULT_API_URL}/submit" | |
FILE_PATH = f"{DEFAULT_API_URL}/files/" | |
# --- Helper Methods --- | |
def fetch_all_questions() -> Dict: | |
"""Fetches all questions from the specified API endpoint. | |
This function retrieves a list of questions from the API, handles potential errors | |
such as network issues, invalid responses, or empty question lists, and returns | |
the questions as a dictionary. | |
Returns: | |
Dict: A dictionary containing the questions data retrieved from the API. | |
Raises: | |
UserWarning: If there is an error fetching the questions, such as network issues, | |
invalid JSON response, or an empty question list. The exception message | |
provides details about the specific error encountered. | |
""" | |
print(f"Fetching questions from: {QUESTIONS_URL}") | |
response = requests.get(QUESTIONS_URL, timeout=15) | |
try: | |
response.raise_for_status() | |
questions_data = response.json() | |
if not questions_data: | |
print("Fetched questions list is empty.") | |
raise UserWarning("Fetched questions list is empty or invalid format.") | |
print(f"Fetched {len(questions_data)} questions.") | |
return questions_data | |
except requests.exceptions.RequestException as e: | |
print(f"Error fetching questions: {e}") | |
raise UserWarning(f"Error fetching questions: {e}") | |
except requests.exceptions.JSONDecodeError as e: | |
print(f"Error decoding JSON response from questions endpoint: {e}") | |
print(f"Response text: {response.text[:500]}") | |
raise UserWarning(f"Error decoding server response for questions: {e}") | |
except Exception as e: | |
print(f"An unexpected error occurred fetching questions: {e}") | |
raise UserWarning(f"An unexpected error occurred fetching questions: {e}") | |
def submit_answers(submission_data: dict, results_log: list) -> Tuple[str, DataFrame]: | |
"""Submits answers to the scoring API and returns the submission status and results. | |
This function sends the provided answers to the scoring API, handles potential errors | |
such as network issues, server errors, or invalid responses, and returns a status | |
message indicating the success or failure of the submission, along with a DataFrame | |
containing the results log. | |
Args: | |
submission_data (dict): A dictionary containing the answers to be submitted. | |
Expected to have a structure compatible with the scoring API. | |
results_log (list): A list of dictionaries containing the results log. | |
This log is converted to a Pandas DataFrame and returned. | |
Returns: | |
Tuple[str, DataFrame]: A tuple containing: | |
- A status message (str) indicating the submission status and any relevant | |
information or error messages. | |
- A Pandas DataFrame containing the results log. | |
""" | |
try: | |
response = requests.post(SUBMIT_URL, json=submission_data, timeout=60) | |
response.raise_for_status() | |
result_data = response.json() | |
final_status = ( | |
f"Submission Successful!\n" | |
f"User: {result_data.get('username')}\n" | |
f"Overall Score: {result_data.get('score', 'N/A')}% " | |
f"({result_data.get('correct_count', '?')}/" | |
f"{result_data.get('total_attempted', '?')} correct)\n" | |
f"Message: {result_data.get('message', 'No message received.')}" | |
) | |
print("Submission successful.") | |
results_df = pd.DataFrame(results_log) | |
return final_status, results_df | |
except requests.exceptions.HTTPError as e: | |
error_detail = f"Server responded with status {e.response.status_code}." | |
try: | |
error_json = e.response.json() | |
error_detail += f" Detail: {error_json.get('detail', e.response.text)}" | |
except requests.exceptions.JSONDecodeError: | |
error_detail += f" Response: {e.response.text[:500]}" | |
status_message = f"Submission Failed: {error_detail}" | |
print(status_message) | |
results_df = pd.DataFrame(results_log) | |
return status_message, results_df | |
except requests.exceptions.Timeout: | |
status_message = "Submission Failed: The request timed out." | |
print(status_message) | |
results_df = pd.DataFrame(results_log) | |
return status_message, results_df | |
except requests.exceptions.RequestException as e: | |
status_message = f"Submission Failed: Network error - {e}" | |
print(status_message) | |
results_df = pd.DataFrame(results_log) | |
return status_message, results_df | |
except Exception as e: | |
status_message = f"An unexpected error occurred during submission: {e}" | |
print(status_message) | |
results_df = pd.DataFrame(results_log) | |
return status_message, results_df | |
def run_agent( | |
gaia_agent: GaiaAgent, questions_data: List[Dict] | |
) -> Tuple[List[Dict], List[Dict]]: | |
"""Runs the agent on a list of questions and returns the results and answers. | |
This function iterates through a list of questions, runs the provided agent on each | |
question, and collects the results and answers. It handles potential errors during | |
agent execution and returns the results log and the answers payload. | |
Args: | |
gaia_agent (GaiaAgent): An instance of the GaiaAgent class, which is responsible for | |
generating answers to the questions. | |
questions_data (List[Dict]): A list of dictionaries, where each dictionary | |
represents a question and contains at least the 'task_id' and 'question' keys. | |
Returns: | |
Tuple[List[Dict], List[Dict]]: A tuple containing: | |
- A list of dictionaries representing the results log, where each dictionary | |
contains the 'Task ID', 'Question', and 'Submitted Answer'. | |
- A list of dictionaries representing the answers payload, where each dictionary | |
contains the 'task_id' and 'submitted_answer'. | |
""" | |
results_log = [] | |
answers_payload = [] | |
print(f"🚀 Running agent on {len(questions_data)} questions...") | |
for item in questions_data: | |
task_id = item.get("task_id") | |
question_text = item.get("question") | |
question_text = process_file(task_id, question_text) | |
if not task_id or question_text is None: | |
print(f"⚠️ Skipping invalid item (missing task_id or question): {item}") | |
continue | |
try: | |
submitted_answer = gaia_agent(task_id, question_text) | |
answers_payload.append( | |
{"task_id": task_id, "submitted_answer": submitted_answer} | |
) | |
except Exception as e: | |
print(f"❌ Error running agent on task {task_id}: {e}") | |
submitted_answer = f"AGENT ERROR: {e}" | |
results_log.append( | |
{ | |
"Task ID": task_id, | |
"Question": question_text, | |
"Submitted Answer": submitted_answer, | |
} | |
) | |
return results_log, answers_payload | |
def process_file(task_id: str, question_text: str) -> str: | |
""" | |
Attempt to download a file associated with a task from the API. | |
- If the file exists (HTTP 200), it is saved to a temp directory and the local file path is returned. | |
- If no file is found (HTTP 404), returns None. | |
- For all other HTTP errors, the exception is propagated to the caller. | |
""" | |
file_url = f"{FILE_PATH}{task_id}" | |
try: | |
response = requests.get(file_url, timeout=30) | |
response.raise_for_status() | |
except requests.exceptions.RequestException as exc: | |
print(f"Exception in download_file>> {str(exc)}") | |
return question_text # Unable to get the file | |
# Determine filename from 'Content-Disposition' header, fallback to task_id | |
content_disposition = response.headers.get("content-disposition", "") | |
filename = task_id | |
match = re.search(r'filename="([^"]+)"', content_disposition) | |
if match: | |
filename = match.group(1) | |
# Save file in a temp directory | |
temp_storage_dir = Path(tempfile.gettempdir()) / "gaia_cached_files" | |
temp_storage_dir.mkdir(parents=True, exist_ok=True) | |
file_path = temp_storage_dir / filename | |
file_path.write_bytes(response.content) | |
return ( | |
f"{question_text}\n\n" | |
f"---\n" | |
f"A file was downloaded for this task and saved locally at:\n" | |
f"{str(file_path)}\n" | |
f"---\n\n" | |
) |