Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -14,7 +14,6 @@ logger = logging.getLogger(__name__)
|
|
14 |
MODEL_LIST = [
|
15 |
("ZombitX64/MultiSent-E5-Pro", "🏆 MultiSent E5 Pro - แนะนำ (ความแม่นยำสูงสุด)"),
|
16 |
("ZombitX64/Thai-sentiment-e5", "🎯 Thai Sentiment E5 - เฉพาะภาษาไทย"),
|
17 |
-
("ZombitX64/wangchanberta-att-spm-uncased-sentiment", "ZombitX64/wangchanberta-att-spm-uncased-sentiment"),
|
18 |
("poom-sci/WangchanBERTa-finetuned-sentiment", "🔥 WangchanBERTa - โมเดลไทยยอดนิยม"),
|
19 |
("SandboxBhh/sentiment-thai-text-model", "✨ Sandbox Thai - เร็วและแม่นยำ"),
|
20 |
("ZombitX64/MultiSent-E5", "⚡ MultiSent E5 - รวดเร็ว"),
|
@@ -26,8 +25,7 @@ MODEL_LIST = [
|
|
26 |
("ZombitX64/Sentiment-03", "🔬 Sentiment v3"),
|
27 |
("ZombitX64/sentiment-103", "🔬 Sentiment 103"),
|
28 |
("nlptown/bert-base-multilingual-uncased-sentiment", "🌍 BERT Multilingual"),
|
29 |
-
("ZombitX64/sentimentv2","🔍 sentimentv2")
|
30 |
-
("ZombitX64/sentimentSumdata-v1","sentimentSumDatav1")
|
31 |
]
|
32 |
|
33 |
# Cache for model loading
|
@@ -39,94 +37,31 @@ def get_nlp(model_name: str):
|
|
39 |
logger.error(f"Error loading model {model_name}: {e}")
|
40 |
raise gr.Error(f"ไม่สามารถโหลดโมเดล {model_name} ได้: {str(e)}")
|
41 |
|
42 |
-
#
|
43 |
-
|
44 |
-
#
|
45 |
-
"
|
46 |
-
"
|
47 |
-
"
|
48 |
-
"LABEL_3": {"sentiment": "very_positive", "intensity": "high", "emoji": "🤩", "color": "#22c55e", "bg": "rgba(34, 197, 94, 0.2)", "description": "เชิงบวกมาก"},
|
49 |
-
"LABEL_4": {"sentiment": "question", "intensity": "normal", "emoji": "🤔", "color": "#60a5fa", "bg": "rgba(96, 165, 250, 0.2)", "description": "คำถาม"},
|
50 |
|
51 |
-
|
52 |
-
"
|
53 |
-
"
|
54 |
-
"2": {"sentiment": "positive", "intensity": "normal", "emoji": "😊", "color": "#34d399", "bg": "rgba(52, 211, 153, 0.2)", "description": "เชิงบวก"},
|
55 |
-
"3": {"sentiment": "very_positive", "intensity": "high", "emoji": "🤩", "color": "#22c55e", "bg": "rgba(34, 197, 94, 0.2)", "description": "เชิงบวกมาก"},
|
56 |
-
"4": {"sentiment": "question", "intensity": "normal", "emoji": "🤔", "color": "#60a5fa", "bg": "rgba(96, 165, 250, 0.2)", "description": "คำถาม"},
|
57 |
|
58 |
-
#
|
59 |
-
"
|
60 |
-
"LABEL_5": {"sentiment": "very_negative", "intensity": "high", "emoji": "😡", "color": "#ef4444", "bg": "rgba(239, 68, 68, 0.2)", "description": "เชิงลบมาก"},
|
61 |
-
|
62 |
-
# Text-based labels (common in some models)
|
63 |
-
"NEGATIVE": {"sentiment": "negative", "intensity": "normal", "emoji": "😢", "color": "#f87171", "bg": "rgba(248, 113, 113, 0.2)", "description": "เชิงลบ"},
|
64 |
-
"NEUTRAL": {"sentiment": "neutral", "intensity": "normal", "emoji": "😐", "color": "#facc15", "bg": "rgba(250, 204, 21, 0.2)", "description": "เป็นกลาง"},
|
65 |
-
"POSITIVE": {"sentiment": "positive", "intensity": "normal", "emoji": "😊", "color": "#34d399", "bg": "rgba(52, 211, 153, 0.2)", "description": "เชิงบวก"},
|
66 |
-
"VERY_NEGATIVE": {"sentiment": "very_negative", "intensity": "high", "emoji": "😡", "color": "#ef4444", "bg": "rgba(239, 68, 68, 0.2)", "description": "เชิงลบมาก"},
|
67 |
-
"VERY_POSITIVE": {"sentiment": "very_positive", "intensity": "high", "emoji": "🤩", "color": "#22c55e", "bg": "rgba(34, 197, 94, 0.2)", "description": "เชิงบวกมาก"},
|
68 |
-
"QUESTION": {"sentiment": "question", "intensity": "normal", "emoji": "🤔", "color": "#60a5fa", "bg": "rgba(96, 165, 250, 0.2)", "description": "คำถาม"},
|
69 |
-
|
70 |
-
# Lowercase variants
|
71 |
-
"negative": {"sentiment": "negative", "intensity": "normal", "emoji": "😢", "color": "#f87171", "bg": "rgba(248, 113, 113, 0.2)", "description": "เชิงลบ"},
|
72 |
-
"neutral": {"sentiment": "neutral", "intensity": "normal", "emoji": "😐", "color": "#facc15", "bg": "rgba(250, 204, 21, 0.2)", "description": "เป็นกลาง"},
|
73 |
-
"positive": {"sentiment": "positive", "intensity": "normal", "emoji": "😊", "color": "#34d399", "bg": "rgba(52, 211, 153, 0.2)", "description": "เชิงบวก"},
|
74 |
-
"very_negative": {"sentiment": "very_negative", "intensity": "high", "emoji": "😡", "color": "#ef4444", "bg": "rgba(239, 68, 68, 0.2)", "description": "เชิงลบมาก"},
|
75 |
-
"very_positive": {"sentiment": "very_positive", "intensity": "high", "emoji": "🤩", "color": "#22c55e", "bg": "rgba(34, 197, 94, 0.2)", "description": "เชิงบวกมาก"},
|
76 |
-
"question": {"sentiment": "question", "intensity": "normal", "emoji": "🤔", "color": "#60a5fa", "bg": "rgba(96, 165, 250, 0.2)", "description": "คำถาม"},
|
77 |
-
}
|
78 |
-
|
79 |
-
# Sentiment categories for counting and summary
|
80 |
-
SENTIMENT_CATEGORIES = {
|
81 |
-
"very_negative": {"name": "เชิงลบมาก", "emoji": "😡", "color": "#ef4444", "order": 1},
|
82 |
-
"negative": {"name": "เชิงลบ", "emoji": "😢", "color": "#f87171", "order": 2},
|
83 |
-
"neutral": {"name": "เป็นกลาง", "emoji": "😐", "color": "#facc15", "order": 3},
|
84 |
-
"positive": {"name": "เชิงบวก", "emoji": "😊", "color": "#34d399", "order": 4},
|
85 |
-
"very_positive": {"name": "เชิงบวกมาก", "emoji": "🤩", "color": "#22c55e", "order": 5},
|
86 |
-
"question": {"name": "คำถาม", "emoji": "🤔", "color": "#60a5fa", "order": 6},
|
87 |
-
"unknown": {"name": "ไม่ทราบ", "emoji": "🔍", "color": "#64748b", "order": 7}
|
88 |
}
|
89 |
|
90 |
def get_label_info(label: str) -> Dict:
|
91 |
-
"""
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
# Convert to string and clean
|
96 |
-
label_str = str(label).strip()
|
97 |
-
|
98 |
-
# Try exact match first
|
99 |
-
if label_str in COMPREHENSIVE_LABEL_MAPPINGS:
|
100 |
-
return COMPREHENSIVE_LABEL_MAPPINGS[label_str]
|
101 |
-
|
102 |
-
# Try case-insensitive match
|
103 |
-
label_upper = label_str.upper()
|
104 |
-
label_lower = label_str.lower()
|
105 |
-
|
106 |
-
for key, value in COMPREHENSIVE_LABEL_MAPPINGS.items():
|
107 |
-
if key.upper() == label_upper or key.lower() == label_lower:
|
108 |
-
return value
|
109 |
-
|
110 |
-
# Try pattern matching for complex labels
|
111 |
-
if re.match(r'^LABEL_\d+$', label_str, re.IGNORECASE):
|
112 |
-
# Extract number from LABEL_X format
|
113 |
-
try:
|
114 |
-
num = int(re.findall(r'\d+', label_str)[0])
|
115 |
-
if str(num) in COMPREHENSIVE_LABEL_MAPPINGS:
|
116 |
-
return COMPREHENSIVE_LABEL_MAPPINGS[str(num)]
|
117 |
-
except (IndexError, ValueError):
|
118 |
-
pass
|
119 |
-
|
120 |
-
# Fallback for unknown labels
|
121 |
-
logger.warning(f"Unknown label: {label}")
|
122 |
-
return {
|
123 |
-
"sentiment": "unknown",
|
124 |
-
"intensity": "normal",
|
125 |
"emoji": "🔍",
|
126 |
"color": "#64748b",
|
127 |
"bg": "rgba(100, 116, 139, 0.2)",
|
128 |
-
"description":
|
129 |
-
}
|
130 |
|
131 |
def split_sentences(text: str) -> List[str]:
|
132 |
"""Enhanced sentence splitting with better Thai support"""
|
@@ -147,7 +82,7 @@ def create_confidence_bar(score: float) -> str:
|
|
147 |
"""
|
148 |
|
149 |
def analyze_text(text: str, model_name: str) -> str:
|
150 |
-
"""Enhanced text analysis with
|
151 |
if not text or not text.strip():
|
152 |
return """
|
153 |
<div style="padding: 20px; background: rgba(248, 113, 113, 0.2); border-radius: 12px; border-left: 4px solid #f87171;">
|
@@ -193,11 +128,9 @@ def analyze_text(text: str, model_name: str) -> str:
|
|
193 |
</div>
|
194 |
"""]
|
195 |
|
196 |
-
|
197 |
-
sentiment_counts = {category: 0 for category in SENTIMENT_CATEGORIES.keys()}
|
198 |
total_confidence = 0
|
199 |
sentence_results = []
|
200 |
-
unique_labels_found = set()
|
201 |
|
202 |
# Analyze each sentence
|
203 |
for i, sentence in enumerate(sentences, 1):
|
@@ -206,17 +139,13 @@ def analyze_text(text: str, model_name: str) -> str:
|
|
206 |
label = result['label']
|
207 |
score = result['score']
|
208 |
|
209 |
-
# Track unique labels for debugging
|
210 |
-
unique_labels_found.add(label)
|
211 |
-
|
212 |
label_info = get_label_info(label)
|
213 |
-
|
214 |
|
215 |
-
|
216 |
-
|
217 |
-
sentiment_counts[sentiment_type] += 1
|
218 |
else:
|
219 |
-
sentiment_counts["
|
220 |
|
221 |
total_confidence += score
|
222 |
|
@@ -225,8 +154,7 @@ def analyze_text(text: str, model_name: str) -> str:
|
|
225 |
'sentence': sentence,
|
226 |
'label_info': label_info,
|
227 |
'score': score,
|
228 |
-
'index': i
|
229 |
-
'raw_label': label
|
230 |
})
|
231 |
|
232 |
except Exception as e:
|
@@ -269,9 +197,6 @@ def analyze_text(text: str, model_name: str) -> str:
|
|
269 |
<span style="background: {label_info['color']}; color: #f8fafc; padding: 4px 12px; border-radius: 20px; font-size: 12px; font-weight: 600; text-transform: uppercase;">
|
270 |
{label_info['description']}
|
271 |
</span>
|
272 |
-
<span style="color: #64748b; font-size: 12px; background: #1e293b; padding: 2px 8px; border-radius: 10px;">
|
273 |
-
{result['raw_label']}
|
274 |
-
</span>
|
275 |
<span style="color: #94a3b8; font-size: 14px;">ประโยคที่ {result['index']}</span>
|
276 |
</div>
|
277 |
<p style="color: #f8fafc; margin: 0 0 12px 0; font-size: 16px; line-height: 1.5;">
|
@@ -288,34 +213,26 @@ def analyze_text(text: str, model_name: str) -> str:
|
|
288 |
total_sentences = len(sentences)
|
289 |
avg_confidence = total_confidence / total_sentences if total_sentences > 0 else 0
|
290 |
|
291 |
-
# Create chart data for summary
|
292 |
chart_items = []
|
293 |
-
|
294 |
-
|
295 |
-
key=lambda x: x[1]["order"]
|
296 |
-
)
|
297 |
|
298 |
-
for
|
299 |
-
if count
|
300 |
-
|
301 |
-
|
302 |
-
|
303 |
-
|
304 |
-
|
305 |
-
|
306 |
-
|
307 |
-
|
308 |
-
<div style="
|
309 |
-
|
310 |
-
|
311 |
-
<div style="width: 60px; height: 6px; background: #334155; border-radius: 3px; overflow: hidden;">
|
312 |
-
<div style="width: {percentage}%; height: 100%; background: {sentiment_info['color']}; transition: all 0.3s ease;"></div>
|
313 |
</div>
|
314 |
-
|
315 |
-
""")
|
316 |
-
|
317 |
-
# Debug information showing found labels
|
318 |
-
debug_labels = ", ".join(sorted(unique_labels_found))
|
319 |
|
320 |
html_parts.append(f"""
|
321 |
<div style="padding: 24px; background: linear-gradient(135deg, #1e293b 0%, #0f172a 100%);">
|
@@ -335,14 +252,9 @@ def analyze_text(text: str, model_name: str) -> str:
|
|
335 |
</div>
|
336 |
</div>
|
337 |
|
338 |
-
<div style="display: grid; gap: 8px;
|
339 |
{"".join(chart_items)}
|
340 |
</div>
|
341 |
-
|
342 |
-
<div style="background: #1e293b; padding: 12px; border-radius: 8px; border-left: 4px solid #60a5fa;">
|
343 |
-
<div style="color: #60a5fa; font-size: 12px; font-weight: 600; margin-bottom: 4px;">🔍 Labels ที่พบในโมเดลนี้:</div>
|
344 |
-
<div style="color: #94a3b8; font-size: 12px; font-family: monospace;">{debug_labels}</div>
|
345 |
-
</div>
|
346 |
</div>
|
347 |
""")
|
348 |
|
@@ -483,8 +395,8 @@ with gr.Blocks(css=CUSTOM_CSS, theme=gr.themes.Base()) as demo:
|
|
483 |
with gr.Row():
|
484 |
gr.HTML("""
|
485 |
<div class='main-uxui-header'>
|
486 |
-
<h1>Thai Sentiment Analysis (
|
487 |
-
<p>วิเคราะห์ความรู้สึกภาษาไทย/อังกฤษ รองรับหลายโมเดล |
|
488 |
</div>
|
489 |
""")
|
490 |
with gr.Row():
|
@@ -512,10 +424,8 @@ with gr.Blocks(css=CUSTOM_CSS, theme=gr.themes.Base()) as demo:
|
|
512 |
["เศร้ามากเลยวันนี้ งานเยอะเกินไป"],
|
513 |
["อาหารอร่อยดี แต่บริการช้ามาก"],
|
514 |
["คุณคิดอย่างไรกับเศรษฐกิจไทย?"],
|
515 |
-
["I love this product! It's amazing
|
516 |
-
["This is the worst experience I've ever had.
|
517 |
-
["The weather is okay today, nothing special."],
|
518 |
-
["What do you think about this new technology?"]
|
519 |
],
|
520 |
inputs=input_box,
|
521 |
label="ตัวอย่างข้อความ",
|
@@ -524,25 +434,13 @@ with gr.Blocks(css=CUSTOM_CSS, theme=gr.themes.Base()) as demo:
|
|
524 |
gr.HTML("""
|
525 |
<div class='main-uxui-legend'>
|
526 |
<div class='main-uxui-section-title'>
|
527 |
-
<span>🗂️</span> คำอธิบายผลลัพธ์
|
528 |
</div>
|
529 |
<div class='legend-row'>
|
530 |
-
<div class='legend-item'><strong
|
531 |
-
<div class='legend-item'><strong>😢 เชิงลบ</strong><br><small>Negative
|
532 |
-
<div class='legend-item'><strong>😐 เป็นกลาง</strong><br><small>Neutral
|
533 |
-
<div class='legend-item'><strong
|
534 |
-
<div class='legend-item'><strong>🤩 เชิงบวกมาก</strong><br><small>Very Positive<br>Labels: 3, LABEL_3, VERY_POSITIVE</small></div>
|
535 |
-
<div class='legend-item'><strong>🤔 คำถาม</strong><br><small>Question<br>Labels: 4, LABEL_4, QUESTION</small></div>
|
536 |
-
</div>
|
537 |
-
<div style="margin-top: 16px; padding: 12px; background: rgba(96, 165, 250, 0.1); border-radius: 8px; border-left: 4px solid #60a5fa;">
|
538 |
-
<div style="color: #60a5fa; font-weight: 600; margin-bottom: 8px;">✨ คุณสมบัติใหม่:</div>
|
539 |
-
<ul style="color: #94a3b8; font-size: 14px; margin: 0; padding-left: 20px;">
|
540 |
-
<li>รองรับ Label หลายรูปแบบ (LABEL_X, ตัวเลข, ข้อความ)</li>
|
541 |
-
<li>แสดง Label ดิบที่โมเดลส่งออกมา</li>
|
542 |
-
<li>ระบบ Fallback สำหรับ Label ที่ไม่รู้จัก</li>
|
543 |
-
<li>Debug information แสดง Label ที่พบ</li>
|
544 |
-
<li>การนับและสรุปผลที่แม่นยำขึ้น</li>
|
545 |
-
</ul>
|
546 |
</div>
|
547 |
</div>
|
548 |
""")
|
|
|
14 |
MODEL_LIST = [
|
15 |
("ZombitX64/MultiSent-E5-Pro", "🏆 MultiSent E5 Pro - แนะนำ (ความแม่นยำสูงสุด)"),
|
16 |
("ZombitX64/Thai-sentiment-e5", "🎯 Thai Sentiment E5 - เฉพาะภาษาไทย"),
|
|
|
17 |
("poom-sci/WangchanBERTa-finetuned-sentiment", "🔥 WangchanBERTa - โมเดลไทยยอดนิยม"),
|
18 |
("SandboxBhh/sentiment-thai-text-model", "✨ Sandbox Thai - เร็วและแม่นยำ"),
|
19 |
("ZombitX64/MultiSent-E5", "⚡ MultiSent E5 - รวดเร็ว"),
|
|
|
25 |
("ZombitX64/Sentiment-03", "🔬 Sentiment v3"),
|
26 |
("ZombitX64/sentiment-103", "🔬 Sentiment 103"),
|
27 |
("nlptown/bert-base-multilingual-uncased-sentiment", "🌍 BERT Multilingual"),
|
28 |
+
("ZombitX64/sentimentv2","🔍 sentimentv2")
|
|
|
29 |
]
|
30 |
|
31 |
# Cache for model loading
|
|
|
37 |
logger.error(f"Error loading model {model_name}: {e}")
|
38 |
raise gr.Error(f"ไม่สามารถโหลดโมเดล {model_name} ได้: {str(e)}")
|
39 |
|
40 |
+
# Enhanced label mapping with modern styling for dark blue theme
|
41 |
+
LABEL_MAPPINGS = {
|
42 |
+
"LABEL_0": {"code": 0, "name": "question", "emoji": "🤔", "color": "#60a5fa", "bg": "rgba(96, 165, 250, 0.2)", "description": "คำถาม"},
|
43 |
+
"LABEL_1": {"code": 1, "name": "negative", "emoji": "😢", "color": "#f87171", "bg": "rgba(248, 113, 113, 0.2)", "description": "เชิงลบ"},
|
44 |
+
"LABEL_2": {"code": 2, "name": "neutral", "emoji": "😐", "color": "#facc15", "bg": "rgba(250, 204, 21, 0.2)", "description": "เป็นกลาง"},
|
45 |
+
"LABEL_3": {"code": 3, "name": "positive", "emoji": "😊", "color": "#34d399", "bg": "rgba(52, 211, 153, 0.2)", "description": "เชิงบวก"},
|
|
|
|
|
46 |
|
47 |
+
"POSITIVE": {"code": 3, "name": "positive", "emoji": "😊", "color": "#34d399", "bg": "rgba(52, 211, 153, 0.2)", "description": "เชิงบวก"},
|
48 |
+
"NEGATIVE": {"code": 1, "name": "negative", "emoji": "😢", "color": "#f87171", "bg": "rgba(248, 113, 113, 0.2)", "description": "เชิงลบ"},
|
49 |
+
"NEUTRAL": {"code": 2, "name": "neutral", "emoji": "😐", "color": "#facc15", "bg": "rgba(250, 204, 21, 0.2)", "description": "เป็นกลาง"},
|
|
|
|
|
|
|
50 |
|
51 |
+
"0": {"code": 0, "name": "negative", "emoji": "😢", "color": "#f87171", "bg": "rgba(248, 113, 113, 0.2)", "description": "เชิงลบ"},
|
52 |
+
"1": {"code": 1, "name": "positive", "emoji": "😊", "color": "#34d399", "bg": "rgba(52, 211, 153, 0.2)", "description": "เชิงบวก"},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
}
|
54 |
|
55 |
def get_label_info(label: str) -> Dict:
|
56 |
+
"""Get label information with fallback for unknown labels"""
|
57 |
+
return LABEL_MAPPINGS.get(label, {
|
58 |
+
"code": -1,
|
59 |
+
"name": label.lower(),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
"emoji": "🔍",
|
61 |
"color": "#64748b",
|
62 |
"bg": "rgba(100, 116, 139, 0.2)",
|
63 |
+
"description": "ไม่ทราบ"
|
64 |
+
})
|
65 |
|
66 |
def split_sentences(text: str) -> List[str]:
|
67 |
"""Enhanced sentence splitting with better Thai support"""
|
|
|
82 |
"""
|
83 |
|
84 |
def analyze_text(text: str, model_name: str) -> str:
|
85 |
+
"""Enhanced text analysis with modern HTML formatting"""
|
86 |
if not text or not text.strip():
|
87 |
return """
|
88 |
<div style="padding: 20px; background: rgba(248, 113, 113, 0.2); border-radius: 12px; border-left: 4px solid #f87171;">
|
|
|
128 |
</div>
|
129 |
"""]
|
130 |
|
131 |
+
sentiment_counts = {"positive": 0, "negative": 0, "neutral": 0, "question": 0, "other": 0}
|
|
|
132 |
total_confidence = 0
|
133 |
sentence_results = []
|
|
|
134 |
|
135 |
# Analyze each sentence
|
136 |
for i, sentence in enumerate(sentences, 1):
|
|
|
139 |
label = result['label']
|
140 |
score = result['score']
|
141 |
|
|
|
|
|
|
|
142 |
label_info = get_label_info(label)
|
143 |
+
label_name = label_info["name"]
|
144 |
|
145 |
+
if label_name in sentiment_counts:
|
146 |
+
sentiment_counts[label_name] += 1
|
|
|
147 |
else:
|
148 |
+
sentiment_counts["other"] += 1
|
149 |
|
150 |
total_confidence += score
|
151 |
|
|
|
154 |
'sentence': sentence,
|
155 |
'label_info': label_info,
|
156 |
'score': score,
|
157 |
+
'index': i
|
|
|
158 |
})
|
159 |
|
160 |
except Exception as e:
|
|
|
197 |
<span style="background: {label_info['color']}; color: #f8fafc; padding: 4px 12px; border-radius: 20px; font-size: 12px; font-weight: 600; text-transform: uppercase;">
|
198 |
{label_info['description']}
|
199 |
</span>
|
|
|
|
|
|
|
200 |
<span style="color: #94a3b8; font-size: 14px;">ประโยคที่ {result['index']}</span>
|
201 |
</div>
|
202 |
<p style="color: #f8fafc; margin: 0 0 12px 0; font-size: 16px; line-height: 1.5;">
|
|
|
213 |
total_sentences = len(sentences)
|
214 |
avg_confidence = total_confidence / total_sentences if total_sentences > 0 else 0
|
215 |
|
216 |
+
# Create chart data for summary
|
217 |
chart_items = []
|
218 |
+
colors = {"positive": "#34d399", "negative": "#f87171", "neutral": "#facc15", "question": "#60a5fa", "other": "#64748b"}
|
219 |
+
emojis = {"positive": "😊", "negative": "😢", "neutral": "😐", "question": "🤔", "other": "🔍"}
|
|
|
|
|
220 |
|
221 |
+
for sentiment, count in sentiment_counts.items():
|
222 |
+
if count > 0:
|
223 |
+
percentage = (count / total_sentences) * 100
|
224 |
+
chart_items.append(f"""
|
225 |
+
<div style="display: flex; align-items: center; gap: 12px; padding: 12px; background: rgba(59, 130, 246, 0.1); border-radius: 8px;">
|
226 |
+
<span style="font-size: 24px;">{emojis.get(sentiment, '🔍')}</span>
|
227 |
+
<div style="flex: 1;">
|
228 |
+
<div style="font-weight: 600; color: #f8fafc; text-transform: capitalize;">{sentiment}</div>
|
229 |
+
<div style="color: #94a3b8; font-size: 14px;">{count} ประโยค ({percentage:.1f}%)</div>
|
230 |
+
</div>
|
231 |
+
<div style="width: 60px; height: 6px; background: #334155; border-radius: 3px; overflow: hidden;">
|
232 |
+
<div style="width: {percentage}%; height: 100%; background: {colors.get(sentiment, '#64748b')}; transition: all 0.3s ease;"></div>
|
233 |
+
</div>
|
|
|
|
|
234 |
</div>
|
235 |
+
""")
|
|
|
|
|
|
|
|
|
236 |
|
237 |
html_parts.append(f"""
|
238 |
<div style="padding: 24px; background: linear-gradient(135deg, #1e293b 0%, #0f172a 100%);">
|
|
|
252 |
</div>
|
253 |
</div>
|
254 |
|
255 |
+
<div style="display: grid; gap: 8px;">
|
256 |
{"".join(chart_items)}
|
257 |
</div>
|
|
|
|
|
|
|
|
|
|
|
258 |
</div>
|
259 |
""")
|
260 |
|
|
|
395 |
with gr.Row():
|
396 |
gr.HTML("""
|
397 |
<div class='main-uxui-header'>
|
398 |
+
<h1>Thai Sentiment Analysis (SpaceThai-e5)</h1>
|
399 |
+
<p>วิเคราะห์ความรู้สึกภาษาไทย/อังกฤษ รองรับหลายโมเดล | Modern UX/UI</p>
|
400 |
</div>
|
401 |
""")
|
402 |
with gr.Row():
|
|
|
424 |
["เศร้ามากเลยวันนี้ งานเยอะเกินไป"],
|
425 |
["อาหารอร่อยดี แต่บริการช้ามาก"],
|
426 |
["คุณคิดอย่างไรกับเศรษฐกิจไทย?"],
|
427 |
+
["I love this product! It's amazing."],
|
428 |
+
["This is the worst experience I've ever had."]
|
|
|
|
|
429 |
],
|
430 |
inputs=input_box,
|
431 |
label="ตัวอย่างข้อความ",
|
|
|
434 |
gr.HTML("""
|
435 |
<div class='main-uxui-legend'>
|
436 |
<div class='main-uxui-section-title'>
|
437 |
+
<span>🗂️</span> คำอธิบายผลลัพธ์
|
438 |
</div>
|
439 |
<div class='legend-row'>
|
440 |
+
<div class='legend-item'><strong>😊 เชิงบวก</strong><br><small>Positive</small></div>
|
441 |
+
<div class='legend-item'><strong>😢 เชิงลบ</strong><br><small>Negative</small></div>
|
442 |
+
<div class='legend-item'><strong>😐 เป็นกลาง</strong><br><small>Neutral</small></div>
|
443 |
+
<div class='legend-item'><strong>🤔 คำถาม</strong><br><small>Question</small></div>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
444 |
</div>
|
445 |
</div>
|
446 |
""")
|