SolarCellBERT / app.py
ZongqianLi's picture
Update app.py
acabee9 verified
raw
history blame
2.16 kB
import streamlit as st
from transformers import pipeline
# 定义模型配置选项
size_lst = ["-base", "-large"]
cased_lst = ["-cased", "-uncased"]
fpretrain_lst = ["None", "-scsmall", "-scmedium", "-sclarge"]
finetune_lst = ["-squad", "-scqa1", "-scqa2"]
# 为每个选项创建下拉菜单
size = st.selectbox("Choose a model size:", size_lst)
cased = st.selectbox("Whether distinguish upper and lowercase letters:", cased_lst)
fpretrain = st.selectbox("Further pretrained on a solar cell corpus:", fpretrain_lst)
finetune = st.selectbox("Finetuned on a QA dataset:", finetune_lst)
# 根据选择构建模型名称
if fpretrain == "None":
model = "".join(["ZongqianLi/bert", size, cased, finetune])
else:
model = "".join(["ZongqianLi/bert", size, cased, fpretrain, finetune])
# 显示用户选择的模型
st.write(f"Your selected model: {model}")
# 加载问答模型
pipe = pipeline("question-answering", model=model)
# 设置默认的问题和上下文
default_property = "FF"
default_context = "The referential DSSC with Pt CE was also measured under the same conditions, which yields η of 6.66% (Voc= 0.78 V, Jsc= 13.0 mA cm−2, FF = 65.9%)."
# 获取用户输入的问题和上下文
property = st.text_input("Enter your the name of the property: ", value=default_property)
context = st.text_area("Enter the context: ", value=default_context, height=300)
# 添加一个按钮,用户点击后执行问答
if st.button('Extract the property'):
question_1 = f"What is the value of {property}?"
if context and question_1:
out = pipe({
'question': question_1,
'context': context
})
value = out["answer"]
st.write(f"First-turn question: {question_1}")
st.write(f"First-turn answer: {value}")
question_2 = f"What material has {property} of {value}?"
out = pipe({
'question': question_2,
'context': context
})
material = out["answer"]
st.write(f"Second-turn question: {question_2}")
st.write(f"First-turn answer: {material}")
else:
st.write("Please enter both a question and context.")